0000000000668371

AUTHOR

Dominik Van Pinxteren

Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F–BEACh 2014 field study

Abstract. The chemical composition of organic aerosols was analyzed using complementary mass spectrometric techniques during a field study in Central Europe in July 2014 (Fichtelgebirge – Biogenic Emission and Aerosol Chemistry, F–BEACh 2014). Aerosols were analyzed in real-time by Aerosol Flowing Atmospheric-Pressure Afterglow Mass Spectrometry (AeroFAPA–MS), Aerosol Mass Spectrometry (AMS), and Chemical Ionization Atmospheric-Pressure interface Time-of-Flight Mass Spectrometry (CI–APiToF–MS). In addition, offline detection of acidic organic compounds was conducted by non-target screening of filter samples using High Resolution Mass Spectrometry (HRMS) in combination with Ultra-High Pressu…

research product

Enhanced Role of Transition Metal Ion Catalysis During In-Cloud Oxidation of SO2

Global sulfate production plays a key role in aerosol radiative forcing; more than half of this production occurs in clouds. We found that sulfur dioxide oxidation catalyzed by natural transition metal ions is the dominant in-cloud oxidation pathway. The pathway was observed to occur primarily on coarse mineral dust, so the sulfate produced will have a short lifetime and little direct or indirect climatic effect. Taking this into account will lead to large changes in estimates of the magnitude and spatial distribution of aerosol forcing. Therefore, this oxidation pathway-which is currently included in only one of the 12 major global climate models-will have a significant impact on assessmen…

research product