0000000000668672

AUTHOR

M. T. Peña

Chiral symmetry and pi-pi scattering in the Covariant Spectator Theory

The pi-pi scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similar to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward-Takahashi identity to the CST pi-pi scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. The Adler self-consistency zero for pi-pi…

research product

Electromagnetic structure of few-nucleon ground states

Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled $\chi$EFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled…

research product

A covariant constituent-quark formalism for mesons

Using the framework of the Covariant Spectator Theory (CST) [1] we are developing a covariant model formulated in Minkowski space to study mesonic structure and spectra. Treating mesons as effective $q\bar{q}$ states, we focused in [2] on the nonrelativistic bound-state problem in momentum space with a linear confining potential. Although integrable, this kernel has singularities which are difficult to handle numerically. In [2] we reformulate it into a form in which all singularities are explicitely removed. The resulting equations are then easier to solve and yield accurate and stable solutions. In the present work, the same method is applied to the relativistic case, improving upon the r…

research product

Linear confinement in momentum space: singularity-free bound-state equations

Relativistic equations of Bethe-Salpeter type for hadron structure are most conveniently formulated in momentum space. The presence of confining interactions causes complications because the corresponding kernels are singular. This occurs not only in the relativistic case but also in the nonrelativistic Schr\"odinger equation where this problem can be studied more easily. For the linear confining interaction the singularity reduces to one of Cauchy principal value form. Although this singularity is integrable, it still makes accurate numerical solutions difficult. We show that this principal value singularity can be eliminated by means of a subtraction method. The resulting equation is much…

research product

Chiral symmetry andπ-πscattering in the covariant spectator theory

The π-π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward Takahashi identity to the CST π-π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. Thus, the Adler self-consistency zero for π…

research product