0000000000669569

AUTHOR

Denis L. J. Lafontaine

showing 4 related works from this author

Positioning Europe for the EPITRANSCRIPTOMICS challenge

2018

WOS: 000444092300018 PubMed ID: 29671387 The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery t…

Epigenomics0301 basic medicine[SDV]Life Sciences [q-bio]Gene ExpressionDetection of RNA ModificationEpigenesis GeneticTranscriptomechemistry.chemical_compoundEcologyEvolution & EthologyNeoplasmsRNA NeoplasmEuropean FundingComputingMilieux_MISCELLANEOUSRNA Neoplasm/geneticsEpitranscriptomicsEpigenomicsStem CellsDNA NeoplasmNeoplasms/genetics[SDV] Life Sciences [q-bio]EuropeGene Expression Regulation NeoplasticDetection of RNA modificationGenetics & GenomicsComputational biologyBiologyBiochemistry & ProteomicsENCODE03 medical and health sciencesEpigenomics/standardsEpitranscriptomicsModel systemsHumansEpigeneticsDatabase of ModificationDNA Neoplasm/geneticsMolecular BiologyComputational & Systems BiologyEuropean funding[SDV.GEN]Life Sciences [q-bio]/GeneticsGene Expression ProfilingFOS: Clinical medicineNeurosciencesModel SystemsRNACell Biology030104 developmental biologychemistryGene Expression Profiling/methodsAlphabetTranscriptomeDNARNA Biology
researchProduct

The 18S ribosomal RNA m 6 A methyltransferase Mettl5 is required for normal walking behavior in Drosophila

2020

RNA modifications have recently emerged as an important layer of gene regulation. N6-methyladenosine (m6A) is the most prominent modification on eukaryotic messenger RNA and has also been found on noncoding RNA, including ribosomal and small nuclear RNA. Recently, several m6A methyltransferases were identified, uncovering the specificity of m6A deposition by structurally distinct enzymes. In order to discover additional m6A enzymes, we performed an RNAi screen to deplete annotated orthologs of human methyltransferase-like proteins (METTLs) in Drosophila cells and identified CG9666, the ortholog of human METTL5. We show that CG9666 is required for specific deposition of m6A on 18S ribosomal …

AdenosineBiochimiem 6 AMettl5WalkingBiologyBiochemistryRibosome18S ribosomal RNA03 medical and health sciences0302 clinical medicineGene expressionRNA Ribosomal 18SGeneticsAnimalsHumansRNA methyltransferase[SDV.BDD]Life Sciences [q-bio]/Development BiologyMolecular Biology030304 developmental biologyBehavior0303 health sciencesMessenger RNAbehaviorBiologie moléculaireRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMethyltransferasesm6ARibosomal RNANon-coding RNARibosome[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]3. Good healthCell biologyribosomeRNA RibosomalDrosophilaBiologie030217 neurology & neurosurgerySmall nuclear RNAReportsEMBO reports
researchProduct

AlkAniline-Seq: Profiling of m7 G and m3 C RNA Modifications at Single Nucleotide Resolution.

2018

RNA modifications play essential roles in gene expression regulation. Only seven out of >150 known RNA modifications are detectable transcriptome-wide by deep sequencing. Here we describe a new principle of RNAseq library preparation, which relies on a chemistry based positive enrichment of reads in the resulting libraries, and therefore leads to unprecedented signal-to-noise ratios. The proposed approach eschews conventional RNA sequencing chemistry and rather exploits the generation of abasic sites and subsequent aniline cleavage. The newly generated 5'-phosphates are used as unique entry for ligation of an adapter in library preparation. This positive selection, embodied in the AlkAnilin…

0301 basic medicineComputational biologyCatalysisDeep sequencing03 medical and health sciencesdeep sequencingAdapter (genetics)[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Epitranscriptomicsabasic siteNucleotideAP siteComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationRegulation of gene expressionChemistryRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral ChemistryMethylationSciences bio-médicales et agricolesRNA modification3. Good health030104 developmental biologymethylationepitranscriptomics
researchProduct

The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent

2015

The combination of Reverse Transcription (RT) and high-throughput sequencing has emerged as a powerful combination to detect modified nucleotides in RNA via analysis of either abortive RT-products or of the incorporation of mismatched dNTPs into cDNA. Here we simultaneously analyze both parameters in detail with respect to the occurrence of N-1-methyladenosine (m1A) in the template RNA. This naturally occurring modification is associated with structural effects, but it is also known as a mediator of antibiotic resistance in ribosomal RNA. In structural probing experiments with dimethylsulfate, m1A is routinely detected by RT-arrest. A specifically developed RNA-Seq protocol was tailored to …

AdenosineSequence Analysis RNAHigh-Throughput Nucleotide SequencingReverse TranscriptionL1Sciences bio-médicales et agricoles13570 Life sciencesMachine LearningMiceSequence Homology Nucleic AcidRNAAnimalsHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology570 Biowissenschaften
researchProduct