0000000000669686

AUTHOR

Marcello A. Budroni

Chaotic dynamics in an unstirred ferroin catalyzed Belousov–Zhabotinsky reaction

Abstract The Belousov–Zhabotinsky (BZ) reaction is the best known example of far from equilibrium self-organizing chemical reaction. Among the many dynamical behaviors that this reaction can exhibit, spatio-temporal chaos attracted particular interest, both for the ferroin and cerium catalyzed systems. In recent years transient chaos was found in the cerium catalyzed BZ reaction, when conducted in batch and unstirred reactors. It was established that the chaotic oscillations, originated by the coupling among chemical kinetics and transport phenomena, appeared and disappeared following a Ruelle–Takens–Newhouse scenario. In this Letter, we show results about the ferroin catalyzed system condu…

research product

Role of the reagents consumption in the chaotic dynamics of the Belousov-Zhabotitinsky oscillator in closed unstirred reactors

Chemical oscillations generated by the Belousov–Zhabotinsky reaction in batch unstirred reactors, show a characteristic chaotic transient in their dynamical regime, which is generally found between two periodic regions. Chemical chaos starts and finishes by following a direct and an inverse Ruelle–Takens–Newhouse scenario, respectively. In previous works we showed, both experimentally and theoretically, that the complex oscillations are generated by the coupling among the nonlinear kinetics and the transport phenomena, the latter due to concentration and density gradients. In particular, convection was found to play a fundamental role. In this paper, we develop a reaction–diffusion–convecti…

research product