0000000000670055

AUTHOR

Kameyab Raza Abidi

Electronic structure and elasticity of two-dimensional metals of group 10 : A DFT study

The discovery of two-dimensional (2D) iron monolayer in graphene pores stimulated experimental and computational material scientists to investigate low-dimensional elemental metals. There have been many advances in their synthesis, stability, and properties in the last few years. Inspired by these advancements, we investigated the electronic structure and elasticity of free-standing monolayers of group 10 elemental metals, viz. Ni, Pd, and Pt. Using density-functional theory (DFT), we explored the energetic, geometric, electronic, and elastic properties of hexagonal, honeycomb, and square lattice structures of each element, in both planar and buckled forms. Among planar configurations, the …

research product

Optimizing density-functional simulations for two-dimensional metals

Unlike covalent two-dimensional (2D) materials like graphene, 2D metals have non-layered structures due to their non-directional, metallic bonding. While experiments on 2D metals are still scarce and challenging, density-functional theory (DFT) provides an ideal approach to predict their basic properties and assist in their design. However, DFT methods have been rarely benchmarked against metallic bonding at low dimensions. Therefore, to identify optimal DFT attributes for a desired accuracy, we systematically benchmark exchange-correlation functionals from LDA to hybrids and basis sets from plane waves to local basis with different pseudopotentials. With 1D chain, 2D honeycomb, 2D square, …

research product