0000000000670891

AUTHOR

E. Tornatore

showing 3 related works from this author

Positive solutions for nonlinear Robin problems

2017

We consider a parametric Robin problem driven by the p-Laplacian with an indefinite potential and with a superlinear reaction term which does not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions. We prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies. We also show the existence of a minimal positive solution $\tilde{u}_\lambda$ and establish the monotonicity and continuity of the map $\lambda\to \tilde{u}_\lambda$.

truncation and comparison techniquesminimax positive solutionSettore MAT/05 - Analisi Matematicalcsh:MathematicsMathematics::Analysis of PDEssuperlinear reactionRobin boundary condition superlinear reaction truncation and comparison techniques bifurcation-type result minimax positive solutionRobin boundary conditionbifurcation-type resultlcsh:QA1-939
researchProduct

On a stochastic SIR model.

2007

researchProduct

Existence of non-zero solutions for a Dirichlet problem driven by (p(x),q(x)-Laplacian

2021

The paper focuses on a Dirichlet problem driven by the (Formula presented.) -Laplacian. The existence of at least two non-zero solutions under suitable conditions on the nonlinear term is established. The approach is based on variational methods.

Dirichlet problemPure mathematicsmultiple solutionscritical pointsApplied Mathematics010102 general mathematicsZero (complex analysis)q(x))-LaplacianMathematics::Spectral Theory-Laplacian01 natural sciences(p(x)q(x))-Laplacian critical points multiple solutions Dirichlet problemTerm (time)010101 applied mathematicsNonlinear systemSettore MAT/05 - Analisi Matematica0101 mathematics(p(x)Laplace operatorAnalysisDirichlet problemMathematicsApplicable Analysis
researchProduct