0000000000671220

AUTHOR

T.s. Kosmas

Probing neutrino magnetic moments at the Spallation Neutron Source facility

24 pages.- 8 figures

research product

Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments

We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated $\chi^2$-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.

research product

Detailed study of the neutral-current neutrino–nucleus scattering off the stable Mo isotopes

Abstract For neutrino detection and for various applications in astrophysics the knowledge of the nuclear responses to astrophysical neutrinos is crucial. Recent studies of neutrino interactions with the 100 Mo nucleus and the other stable molybdenum isotopes are important for the planned MOON (Mo Observatory of Neutrinos) detector. To this aim, in the present work we perform detailed nuclear structure calculations for the neutral-current neutrino–nucleus scattering off the stable molybdenum isotopes. We focus on the differential and total neutrino–nucleus cross sections as well as on flux averaged cross sections to various supernova neutrino spectra. We also propose a more efficient method…

research product

Enhanced muon-electron conversion in nuclei in the inverse seesaw model

We investigate nuclear mu-e conversion in the framework of an effective Lagrangian arising from the inverse seesaw model of neutrino masses. We consider lepton flavour violation interactions that arise from short range (non-photonic) as well as long range (photonic) contributions. Upper bounds for the LFV parameters characterizing mu-e conversion are derived in the inverse seesaw model Lagrangian using the available limits on the mu-e conversion branching ratio, as well as the expected sensitivities of upcoming experiments. We comment on the relative importance of these two types of contributions and their relationship with the measured solar neutrino mixing angle theta_12 and the dependenc…

research product

The response of (95,97)Mo to supernova neutrinos

Knowledge about nuclear responses to neutrinos is essential for both astrophysical applications and studies of neutrino properties. We perform in this paper calculations of the cross sections for neutral-current neutrino scattering off the odd A = 95,97 Mo isotopes for energies appropriate for the detection of supernova neutrinos. Both the incoherent and coherent contributions to the cross sections are evaluated. The prominently contributing nuclear final states are identified and analysed. We employ the microscopic quasiparticle-phonon model (MQPM) to construct the wave functions of the initial and final nuclear states. The response of the aforementioned nuclei to supernova neutrinos are c…

research product

Coherent and incoherent (μ−, e−) conversion in nuclei

Coherent and incoherent (μ−, e−) conversion in nuclei is studied within the framework of several theories which violate flavour lepton number. A useful approach is followed which allows a factorization of the conversion widths into nuclear factors and other factors which depend only on the elementary process. The nuclear factors are evaluated in a wide range of nuclei allowing simple calculations of the conversion rates throughout the periodic table for a given theory with a minimum of work in the elementary sector. The coherent conversion is found to dominate the process. The results obtained modify appreciable previous results in the literature, particularly in the incoherent process.

research product

Theoretical study of neutrino scattering off the stable even Mo isotopes at low and intermediate energies

A systematic study of the cross sections of neutral-current neutrino scattering off the stable even Mo isotopes (mass number A = 92, 94, 96, 98, 100), at low and intermediate neutrino energies (E(nu) <= 130 MeV), is presented and discussed. The required wave functions for the initial (ground state) and all accessible final nuclear states are constructed in the context of the quasi-particle random-phase approximation (QRPA) and tested against data on the low-lying energy spectra of the isotopes in question. The individual contributions coming from the polar-vector and axial-vector components of the hadronic current for the coherent and incoherent channels of each isotope are investigated. Th…

research product