0000000000671641

AUTHOR

Simo Makkonen

Multivariate Gaussian criteria in SMAA

Abstract We consider stochastic multicriteria decision-making problems with multiple decision makers. In such problems, the uncertainty or inaccuracy of the criteria measurements and the partial or missing preference information can be represented through probability distributions. In many real-life problems the uncertainties of criteria measurements may be dependent. However, it is often difficult to quantify these dependencies. Also, most of the existing methods are unable to handle such dependency information. In this paper, we develop a method for handling dependent uncertainties in stochastic multicriteria group decision-making problems. We measure the criteria, their uncertainties and…

research product

Two ways to handle dependent uncertainties in multi-criteria decision problems☆

Abstract We consider multi-criteria group decision-making problems, where the decision makers (DMs) want to identify their most preferred alternative(s) based on uncertain or inaccurate criteria measurements. In many real-life problems the uncertainties may be dependent. In this paper, we focus on multicriteria decision-making (MCDM) problems where the criteria and their uncertainties are computed using a stochastic simulation model. The model is based on decision variables and stochastic parameters with given distributions. The simulation model determines for the criteria a joint probability distribution, which quantifies the uncertainties and their dependencies. We present and compare two…

research product