0000000000671954
AUTHOR
Adrian Branga
An Application of the Fixed Point Theory to the Study of Monotonic Solutions for Systems of Differential Equations
In this paper, we establish some conditions for the existence and uniqueness of the monotonic solutions for nonhomogeneous systems of first-order linear differential equations, by using a result of the fixed points theory for sequentially complete gauge spaces.
A remarkable equality referring to spline functions in Hilbert spaces
In the introduction of this paper is presented the definition of the generalized spline functions as solutions of a variational problem and are shown some theorems regarding to the existence and uniqueness. The main result of this article consists in a remarkable equality verified by the generalized spline elements, based on the properties of the spaces, operator and interpolatory set involved, which can be used as a characterization theorem of the generalized spline functions in Hilbert spaces.