0000000000672450

AUTHOR

Tung Vuong

Spoken conversational context improves query auto-completion in web search

Web searches often originate from conversations in which people engage before they perform a search. Therefore, conversations can be a valuable source of context with which to support the search process. We investigate whether spoken input from conversations can be used as a context to improve query auto-completion. We model the temporal dynamics of the spoken conversational context preceding queries and use these models to re-rank the query auto-completion suggestions. Data were collected from a controlled experiment and comprised conversations among 12 participant pairs conversing about movies or traveling. Search query logs during the conversations were recorded and temporally associated…

research product

Entity Recommendation for Everyday Digital Tasks

| openaire: EC/H2020/826266/EU//CO-ADAPT Recommender systems can support everyday digital tasks by retrieving and recommending useful information contextually. This is becoming increasingly relevant in services and operating systems. Previous research often focuses on specific recommendation tasks with data captured from interactions with an individual application. The quality of recommendations is also often evaluated addressing only computational measures of accuracy, without investigating the usefulness of recommendations in realistic tasks. The aim of this work is to synthesize the research in this area through a novel approach by (1) demonstrating comprehensive digital activity monitor…

research product

EntityBot: Supporting Everyday Digital Tasks with Entity Recommendations

Everyday digital tasks can highly benefit from systems that recommend the right information to use at the right time. However, existing solutions typically support only specific applications and tasks. In this demo, we showcase EntityBot, a system that captures context across application boundaries and recommends information entities related to the current task. The user’s digital activity is continuously monitored by capturing all content on the computer screen using optical character recognition. This includes all applications and services being used and specific to individuals’ computer usages such as instant messaging, emailing, web browsing, and word processing. A linear model is then …

research product

EntityBot: Actionable Entity Recommendations for Everyday Digital Task

Our everyday digital tasks require access to information from a wide range of applications and systems. Although traditional search systems can help find information, they usually operate within one application (e.g., email client or web browser) and require the user's cognitive effort and attention to formulate proper search queries. In this paper, we demonstrate EntityBot, a system that proactively provides useful and supporting entities across application boundaries without requiring explicit query formulation. Our methodology is to exploit the context from screen frames captured every 2 seconds to recommend relevant entities for the current task. Recommendations are not restricted to on…

research product