0000000000672590
AUTHOR
Peter B. Denton
Constraints on inflation with an extended neutrino sector
Constraints on inflationary models typically assume only the standard models of cosmology and particle physics. By extending the neutrino sector to include a new interaction with a light scalar mediator (mφ∼MeV), it is possible to relax these constraints, in particular via opening up regions of the parameter space of the spectral index ns. These new interactions can be probed at IceCube via interactions of astrophysical neutrinos with the cosmic neutrino background for nearly all of the relevant parameter space.
Neutrino oscillation probabilities through the looking glass
In this paper we review different expansions for neutrino oscillation probabilities in matter in the context of long-baseline neutrino experiments. We examine the accuracy and computational efficiency of different exact and approximate expressions. We find that many of the expressions used in the literature are not precise enough for the next generation of long-baseline experiments, but several of them are while maintaining comparable simplicity. The results of this paper can be used as guidance to both phenomenologists and experimentalists when implementing the various oscillation expressions into their analysis tools.
Inflation meets neutrinos
Constraints on inflationary models typically assume only the standard models of cosmology and particle physics. By extending the neutrino sector to include a new interaction with a light scalar mediator ($m_{\phi}\sim$MeV), it is possible to relax these constraints, in particular via opening up regions of the parameter space of the spectral index $n_s$. These new interactions can be probed at IceCube via interactions of astrophysical neutrinos with the Cosmic Neutrino Background for nearly all of the relevant parameter space.
New opportunities at the next-generation neutrino experiments I: BSM neutrino physics and dark matter
Abstract The combination of the high intensity proton beam facilities and massive detectors for precision measurements of neutrino oscillation parameters including the charge-parity violating (CPV) phase will open the door to help make beyond the standard model (BSM) physics reachable even in low energy regimes in the accelerator-based experiments. Large-mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable the searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is also conceivable that BSM topics in the next-generation neutrino experiments could be the dominant physics topics in the fore…
Tau neutrinos in the next decade: from GeV to EeV
Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.