0000000000672590

AUTHOR

Peter B. Denton

showing 5 related works from this author

Constraints on inflation with an extended neutrino sector

2019

Constraints on inflationary models typically assume only the standard models of cosmology and particle physics. By extending the neutrino sector to include a new interaction with a light scalar mediator (mφ∼MeV), it is possible to relax these constraints, in particular via opening up regions of the parameter space of the spectral index ns. These new interactions can be probed at IceCube via interactions of astrophysical neutrinos with the cosmic neutrino background for nearly all of the relevant parameter space.

PhysicsParticle physicsSpectral index010308 nuclear & particles physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaScalar (mathematics)Parameter space01 natural sciencesCosmologyCosmic neutrino background0103 physical sciencesNeutrino010306 general physics
researchProduct

Neutrino oscillation probabilities through the looking glass

2019

In this paper we review different expansions for neutrino oscillation probabilities in matter in the context of long-baseline neutrino experiments. We examine the accuracy and computational efficiency of different exact and approximate expressions. We find that many of the expressions used in the literature are not precise enough for the next generation of long-baseline experiments, but several of them are while maintaining comparable simplicity. The results of this paper can be used as guidance to both phenomenologists and experimentalists when implementing the various oscillation expressions into their analysis tools.

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsOscillationmedia_common.quotation_subjectFOS: Physical sciencesContext (language use)01 natural scienceslcsh:QC1-999Theoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesSimplicityAnalysis toolsNeutrino010306 general physicsNeutrino oscillationlcsh:Physicsmedia_common
researchProduct

New opportunities at the next-generation neutrino experiments I: BSM neutrino physics and dark matter

2020

Abstract The combination of the high intensity proton beam facilities and massive detectors for precision measurements of neutrino oscillation parameters including the charge-parity violating (CPV) phase will open the door to help make beyond the standard model (BSM) physics reachable even in low energy regimes in the accelerator-based experiments. Large-mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable the searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is also conceivable that BSM topics in the next-generation neutrino experiments could be the dominant physics topics in the fore…

PhysicsParticle physicsSterile neutrinoPhysics beyond the Standard ModelDark matterGeneral Physics and AstronomyScale (descriptive set theory)Tracking (particle physics)01 natural sciences0103 physical sciencesDeep Underground Neutrino ExperimentHigh Energy Physics::ExperimentNeutrino010306 general physicsNeutrino oscillationReports on Progress in Physics
researchProduct

Inflation meets neutrinos

2019

Constraints on inflationary models typically assume only the standard models of cosmology and particle physics. By extending the neutrino sector to include a new interaction with a light scalar mediator ($m_{\phi}\sim$MeV), it is possible to relax these constraints, in particular via opening up regions of the parameter space of the spectral index $n_s$. These new interactions can be probed at IceCube via interactions of astrophysical neutrinos with the Cosmic Neutrino Background for nearly all of the relevant parameter space.

High Energy Astrophysical Phenomena (astro-ph.HE)High Energy Physics - PhenomenologyCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics - Phenomenology (hep-ph)Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Tau neutrinos in the next decade: from GeV to EeV

2022

Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.

HIGH-ENERGY NEUTRINOSMAGNETIC-MOMENTAstrophysics and AstronomyNuclear and High Energy PhysicsRADIO PULSESPhysics::Instrumentation and Detectorstau neutrinosFOS: Physical sciencesCHERENKOV LIGHT YIELDGeV530High Energy Physics - Experimenttau neutrino theorySubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)neutrino experimentsSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Particle Physics - PhenomenologyAIR-SHOWERSLEPTON FLAVORastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)hep-exPhysicshep-phtau neutrinos; neutrino experiments; tau neutrino theorylandscapeCOSMIC-RAYSHigh Energy Physics - PhenomenologyQUANTUM-GRAVITYCHARGED-PARTICLES[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]beam dumpPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentLORENTZ VIOLATION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaParticle Physics - Experiment
researchProduct