0000000000672666
AUTHOR
E De Lathauwer
Estimation of the spatially distributed surface energy budget for AgriSAR 2006, part II : Integration of remote sensing and hydrologic modeling
In most hydrologic modeling studies, the hypothesis is made that an improvement in the modeled soil moisture leads to an improvement in the modeled surface energy balance. The objective of this paper is to assess whether this hypothesis is true. The study was performed over the winter wheat fields in the AgriSAR 2006 domain. Remotely sensed soil moisture values and latent heat fluxes were used, in combination with in situ observations. First, the land cover and saturated subsurface flow parameters were estimated using the in situ observations. A spatially distributed model simulation was then performed, for which the Brooks-Corey parameters were derived from a soil texture map, and of which…
Estimation of the spatially distributed surface energy budget for AgriSAR 2006, part I : remote sensing model intercomparison
A number of energy balance models of variable complexity that use remotely sensed boundary conditions for producing spatially distributed maps of surface fluxes have been proposed. Validation typically involves comparing model output to flux tower observations at a handful of sites, and hence there is no way of evaluating the reliability of model output for the remaining pixels comprising a scene. To assess the uncertainty in flux estimation over a remote sensing scene requires one to conduct pixel-by-pixel comparisons of the output. The objective of this paper is to assess whether the simplifications made in a simple model lead to erroneous predictions or deviations from a more complex mod…