0000000000673426

AUTHOR

Gunnar Schotta

0000-0003-4940-6135

showing 2 related works from this author

Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation

2018

Summary Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and “toxic” gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function …

0301 basic medicineMaleEncephalomyelitis Autoimmune ExperimentalBlimp1CNS2Regulatory T cellInflammationchemical and pharmacologic phenomenaBiologyT-Lymphocytes RegulatoryGeneral Biochemistry Genetics and Molecular BiologyArticleepigenetic regulationDNA Methyltransferase 3AEpigenesis Genetic03 medical and health sciencesGenomic ImprintingMice0302 clinical medicineImmune systemDownregulation and upregulationmedicineAnimalsEpigeneticsDNA (Cytosine-5-)-Methyltransferaseslcsh:QH301-705.5Regulation of gene expressionInterleukin-6FOXP3Forkhead Transcription FactorsDNA methyltransferaseshemic and immune systemsDNA Methylation3. Good healthCell biologyddc:Mice Inbred C57BL030104 developmental biologymedicine.anatomical_structureregulatory T cellslcsh:Biology (General)inflammationFoxp3DNA methylationFemalePositive Regulatory Domain I-Binding Factor 1medicine.symptomCNS030217 neurology & neurosurgeryCell Reports
researchProduct

FSHD muscular dystrophy region gene 1 binds Suv4-20h1 histone methyltransferase and impairs myogenesis.

2013

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant myopathy with a strong epigenetic component. It is associated with deletion of a macrosatellite repeat leading to over-expression of the nearby genes. Among them, we focused on FSHD region gene 1 (FRG1) since its over-expression in mice, Xenopus laevis and Caenorhabditis elegans, leads to muscular dystrophy-like defects, suggesting that FRG1 plays a relevant role in muscle biology. Here we show that, when over-expressed, FRG1 binds and interferes with the activity of the histone methyltransferase Suv4-20h1 both in mammals and Drosophila. Accordingly, FRG1 over-expression or Suv4-20h1 knockdown inhibits myogenesis. Moreov…

Muscle DevelopmentEvolution Molecular03 medical and health sciencesMice0302 clinical medicineGeneticsmedicineFacioscapulohumeral muscular dystrophyMyocyteAnimalsHumansEpigeneticsMuscular dystrophyMyopathyMolecular Biology030304 developmental biologyCell NucleusMice Knockout0303 health sciencesMuscle CellsbiologyMyogenesisMicrofilament ProteinsNuclear ProteinsProteinsRNA-Binding ProteinsCell DifferentiationCell BiologyGeneral MedicineHistone-Lysine N-MethyltransferaseMuscular Dystrophy Animalmedicine.diseaseMolecular biologyHistoneDrosophila melanogasterHEK293 CellsPhenotypeOrgan SpecificityHistone methyltransferaseEpigenetic deregulation by FRG1Gene Knockdown Techniquesbiology.proteinmedicine.symptomCarrier Proteins030217 neurology & neurosurgeryProtein BindingJournal of molecular cell biology
researchProduct