0000000000673440

AUTHOR

J. Bouchez

showing 35 related works from this author

Search for the exotic Θ+ resonance in the NOMAD experiment

2006

12 pages, 16 figures.-- PACS nrs.: 13.15.+g; 13.60.Le; 13.87.Fh; 14.40.Ev.-- ISI Article Identifier: 000243973100007.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ex/0612063.-- et al.

QuarkParticle physicsPhysics and Astronomy (miscellaneous)Protonneutrino; nutrino oscillations; quarksElectromagnetic Calorimeter7. Clean energy01 natural sciencesParticle identificationHigh Energy Physics - ExperimentNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrino010306 general physicsEngineering (miscellaneous)Charged currentPhysicsNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaTransition Radiation DetectorPositive-strangenessBaryonPhotoproductionHigh Energy Physics::ExperimentNeutrinoParticle Physics - ExperimentCharged Current Interactions
researchProduct

A more sensitive search for νμ→ντ oscillations in NOMAD

1999

With additional data and improved algorithms, we have enhanced the sensitivity of our appearance search for $\numunutau$ oscillations in the NOMAD detector in the CERN-SPS wide-band neutrino beam. The search uses kinematic criteria to identify $\nutau$ charged current interactions followed by decay of the $\tau^-$ to one of several decay modes. Our ``blind'' analyses of deep-inelastic scattering data taken in 1996 and 1997, combined with consistent reanalyses of previously reported 1995 data, yield no oscillation signal. For the two-family oscillation scenario, we present the contour outlining a 90\% C.L. confidence region in the $\sin^22\theta_{\mu \tau} - \Delta m^2$ plane. At large $\Del…

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsOscillationScatteringHigh Energy Physics::ExperimentSensitivity (control systems)NeutrinoNeutrino beamNeutrino oscillationCharged currentConfidence regionPhysics Letters B
researchProduct

Evidence for Muon Neutrino Oscillation in an Accelerator-Based Experiment

2005

We present results for muon neutrino oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced muon neutrino beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy dependent disappearance of muon neutrino, which we presume have oscillated to tau neutrino. The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).

Particle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesddc:500.201 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesMuon neutrino010306 general physicsNeutrino oscillationPhysicsTamura Norio010308 nuclear & particles physicsOscillationDetectorHigh Energy Physics::PhenomenologySigmaFísicaSolar neutrino problemK2K experimentPhysics::Accelerator Physics田村 詔生High Energy Physics::ExperimentBeam (structure)
researchProduct

Search for νμ→νe oscillations in the NOMAD experiment

2003

We present the results of a search for vμ → v e oscillations in the NOMAD experiment at CERN. The experiment looked for the appearance of ve in a predominantly vμ wide-band neutrino beam at the CERN SPS. No evidence for oscillations was found. The 90% confidence limits obtained are Δm2 < 0.4 eV 2 for maximal mixing and sin2(2θ) < 1.4 × 10-3 for large Δm2. This result excludes the LSND allowed region of oscillation parameters with Δm2 ≳ 10 eV2. © 2003 Elsevier B.V. All rights reserved.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsOscillationNeutrino oscillationsNeutrino beam01 natural sciencesNuclear physics0103 physical sciencesEnergy spectrumNeutrino010306 general physicsNeutrino oscillationCharged current
researchProduct

A Search for Single Photon Events in Neutrino Interactions

2011

We present a search for neutrino induced events containing a single, exclusive photon using data from the NOMAD experiment at the CERN SPS where the average energy of the neutrino flux is ≃25 GeV. The search is motivated by an excess of electron-like events in the 200-475 MeV energy region as reported by the MiniBooNE experiment. In NOMAD, photons are identified via their conversion to e + e - in an active target embedded in a magnetic field. The background to the single photon signal is dominated by the asymmetric decay of neutral pions produced either in a coherent neutrino-nucleus interaction, or in a neutrino-nucleon neutral current deep inelastic scattering, or in an interaction occurr…

Nuclear and High Energy PhysicsParticle physicsPhotonFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsMiniBooNENeutral currentHigh Energy Physics - Experiment (hep-ex)PionHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Coherent; Neutral current; Neutrino; Pion; Single photon; Nuclear and High Energy Physics010306 general physicsCharged currentPhysicsSingle photon; Neutrino; Neutral current; Coherent; PionNeutral current010308 nuclear & particles physicsFísicaDeep inelastic scatteringsingle photon; neutrino; neutral current; coherent; pionHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]PionHigh Energy Physics::ExperimentSingle photonNeutrinoCoherentEvent (particle physics)Particle Physics - Experiment
researchProduct

Production properties of $K*(892)\pm$ vector mesons and their spin alignment as measured in the NOMAD experiment

2006

First measurements of K*(892) mesons production properties and their spin alignment in nu_mu charged current (CC) and neutral current (NC) interactions are presented. The analysis of the full data sample of the NOMAD experiment is performed in different kinematic regions. For K*+ and K*- mesons produced in nu_mu CC interactions and decaying into K0 pi+/- we have found the following yields per event: (2.6 +/- 0.2 (stat.) +/- 0.2 (syst.))% and (1.6 +/- 0.1 (stat.) +/- 0.1 (syst.))% respectively, while for the K*+ and K*- mesons produced in nu NC interactions the corresponding yields per event are: (2.5 +/- 0.3 (stat.) +/- 0.3 (syst.))% and (1.0 +/- 0.3 (stat.) +/- 0.2 (syst.))%. The results o…

Particle physicsPhysics and Astronomy (miscellaneous)MesonAnalytical chemistryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentEngineering (miscellaneous)Charged currentSpin-½PhysicsAnnihilationNeutral current010308 nuclear & particles physicsFísicaFull dataProduction (computer science)High Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Physics at a future Neutrino Factory and super-beam facility

2009

The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, …

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Particle physicsPhysics::Instrumentation and DetectorsMUONIUM-ANTIMUONIUM CONVERSIONFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2LONG-BASE-LINE01 natural sciences7. Clean energyWARM DARK-MATTERNuclear physicsLEPTON-FLAVOR VIOLATIONELECTRIC-DIPOLE MOMENTHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ANOMALOUS MAGNETIC-MOMENT010306 general physicsNeutrino oscillationNeutrino physics; Neutrino factoryParticle Physics - PhenomenologyR-PARITY VIOLATIONPhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]LARGE EXTRA DIMENSIONSDOUBLE-BETA-DECAYNeutrino factoryFísicaMU-E CONVERSIONNeutrino physicsHigh Energy Physics - PhenomenologyExperimental High Energy PhysicsLarge extra dimensionCP violationPhysics::Accelerator PhysicsNeutrino FactoryHigh Energy Physics::ExperimentNeutrino
researchProduct

Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector

2012

Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The …

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutrino oscillationPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical Phenomenaon-axis near detectorFOS: Physical sciencesddc:500.201 natural sciences7. Clean energyNeutrino oscillation; on-axis near detectorneutrino oscillation; neutrino detector; wavelength shifting fiber; t2k; extruded scintillator; neutrino beamNeutrino detectorNuclear physicsNeutrino beamneutrino beam0103 physical sciencesExtruded scintillatorMuon neutrinoneutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationInstrumentationT2KPhysicst2k010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyNeutrino oscillation; T2K; Neutrino beam; Neutrino detector; Extruded scintillator; Wavelength shifting fiberT2K experimentextruded scintillatorFísicaInstrumentation and Detectors (physics.ins-det)Neutrino detectorneutrino detectorWavelength shiftingfiberMeasurements of neutrino speedPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrinoBeam (structure)Leptonwavelength shifting fiber
researchProduct

Precision measurement of scaled momentum, charge multiplicity, and thrust in νμN and interactions

1999

By focusing on the notion of electronic document, we differentiate two evolutions which are useful to distinct titles: on the one hand are the documents, which have value of reference. Its administrator will take care to preserve its integrity and its context of production which is strongly significant. On the other hand are resources, evolutionary elements by nature, which the user must be able to appropriate and who must thus be placed at the disposal so that the production is erased, to focus on a logic of exploitation and service.

PhysicsNuclear and High Energy PhysicsParticle physicsOverlineCoherence effectElectronic documentThrustMultiplicity (chemistry)Charged currentPhysics Letters B
researchProduct

A study of strange particle production in nu(mu) charged current interactions in the NOMAD experiment

2001

A study of strange particle production in $\nu_\mu$ charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles ($K^0_s, \Lambda, \bar{\Lambda}$) have been measured. Mean multiplicities are reported as a function of the event kinematic variables $E_\nu$, $W^2$ and $Q^2$ as well as of the variables describing particle behaviour within a hadronic jet: $x_F$, $z$ and $p_T^2$. Decays of resonances and heavy hyperons with identified $K^0_s$ and $\Lambda$ in the final state have been analyzed. Clear signals corresponding to $\rm {K^\star}^\pm$ $\rm {\Sigma^\star}^\pm$, $\rm \Xi^-$ and $\rm \Sigma^0$ have been observed. A study of s…

PhysicsNuclear and High Energy PhysicsStrange quarkParticle physics010308 nuclear & particles physicsStar (game theory)HadronHyperonFísicaLambda01 natural sciencesNuclear physics0103 physical sciencesneutrino interactions; strange particle productionProduction (computer science)High Energy Physics::ExperimentNeutrino010306 general physicsNuclear ExperimentCharged currentParticle Physics - Experiment
researchProduct

Search for heavy neutrinos mixing with tau neutrinos

2001

We report on a search for heavy neutrinos ($\nus$) produced in the decay $D_s\to \tau \nus$ at the SPS proton target followed by the decay $\nudecay$ in the NOMAD detector. Both decays are expected to occur if $\nus$ is a component of $\nu_{\tau}$.\ From the analysis of the data collected during the 1996-1998 runs with $4.1\times10^{19}$ protons on target, a single candidate event consistent with background expectations was found. This allows to derive an upper limit on the mixing strength between the heavy neutrino and the tau neutrino in the $\nus$ mass range from 10 to 190 $\rm MeV$. Windows between the SN1987a and Big Bang Nucleosynthesis lower limits and our result are still open for f…

Nuclear and High Energy PhysicsParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]ProtonFOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Big Bang nucleosynthesisTau neutrino0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsMixing (physics)PhysicsRange (particle radiation)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísica3. Good healthneutrino mixing; neutrino decayHigh Energy Physics::ExperimentNeutrinoAnomaly (physics)Event (particle physics)Particle Physics - Experiment
researchProduct

Updated Results from the $\nu_{\tau}$ Appearance Search in NOMAD

2000

Updated results from the appearance searches for $\numunutau$ and $\nuenutau$ oscillations in the full NOMAD data sample are reported. The increased data and the use of more refined kinematic schemes for the $\nutau$ CC selection allow a significant improvement of the overall sensitivity. The ``blind analysis" of both the deep-inelastic and the low multiplicity samples yields no evidence for an oscillation signal. In the two-family oscillation scenario, this sets a 90\% C.L. region in the $\sin^22\theta_{\mu\tau} - \Delta m^2$ plane which includes $\sin^22\theta_{\mu\tau}\ <\ 4.4\times10^{-4}$ at large $\Delta m^2$ and $\Delta m^2 < 0.8$ eV$^2$/$c^4$ at $\sin^22\theta_{\mu \tau}=1$. The cor…

PhysicsNuclear and High Energy PhysicsParticle physicsOscillationFísicaMultiplicity (mathematics)Sensitivity (control systems)Neutrino oscillationCharged currentParticle Physics - Experiment
researchProduct

Measurement of neutrino oscillation by the K2K experiment

2006

We present measurements of nu_mu disappearance in K2K, the KEK to Kamioka long-baseline neutrino oscillation experiment. One hundred and twelve beam-originated neutrino events are observed in the fiducial volume of Super-Kamiokande with an expectation of 158.1^{+9.2}_{-8.6} events without oscillation. A distortion of the energy spectrum is also seen in 58 single-ring muon-like events with reconstructed energies. The probability that the observations are explained by the expectation for no neutrino oscillation is 0.0015% (4.3sigma). In a two flavor oscillation scenario, the allowed Delta m^2 region at sin^2(2theta) is between 1.9 and 3.5 x 10^{-3} eV^2 at the 90% C.L. with a best-fit value o…

PhysicsNuclear and High Energy PhysicsParticle physicsTamura Norio010308 nuclear & particles physicsOscillationT2K experimentFOS: Physical sciencesFísicaElementary particle7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsMassless particleHigh Energy Physics - Experiment (hep-ex)K2K experiment0103 physical sciences田村 詔生Neutrino010306 general physicsNeutrino oscillationLeptonPhysical Review D
researchProduct

Limit on νe→ντ oscillations from the NOMAD experiment

2000

Abstract In the context of a two-flavour approximation we reinterpret the published NOMAD limit on ν μ → ν τ oscillations in terms of ν e → ν τ oscillations. At 90% C.L. we obtain sin 2 2θ eτ 5.2×10 −2 for large Δm 2 , while for sin 2 2 θ eτ =1 the confidence region includes Δm 2 2 / c 4 .

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physics0103 physical sciencesContext (language use)Limit (mathematics)Neutrino beam010306 general physicsNeutrino oscillation01 natural sciencesCharged currentPhysics Letters B
researchProduct

New results on a search for a 33.9 MeV/c2 neutral particle from π+ decay in the NOMAD experiment

2002

We report on a direct search in NOMAD for a new 33.9 MeV/c^2 neutral particle (X) produced in pion decay in flight, pi-->mu_X followed by the decay X -->nu e^+e^-. Both decays are postulated to occur to explain the time anomaly observed by the KARMEN experiment. From the analysis of the data collected during the 1996?1998 runs with 4.1×10^19 protons on target, a single candidate event consistent with background expectations was found. The search is sensitive to a pion branching ratio BR(pi-->muX >3.7×10^-15, significantly smaller than previous experimental limits.

PhysicsNuclear and High Energy PhysicsParticle physicsNeutrino decay; Neutrino mixing; Nuclear and High Energy PhysicsBranching fractionNeutrino mixing; Neutrino decayNuclear physicsPionPiDirect searchNeutrino mixingAnomaly (physics)Neutral particleEvent (particle physics)Neutrino decayKARMENPhysics Letters B
researchProduct

Measurement of the polarization in νμ charged current interactions in the NOMAD experiment

2001

The Λ polarization in νμ charged current interactions has been measured in the NOMAD experiment. The event sample (8087 reconstructed Λ 's) is more than an order of magnitude larger than that of previous bubble chamber experiments, while the quality of event reconstruction is comparable. We observe negative polarization along the W -boson direction which is enhanced in the target fragmentation region: Px(xF 0)=−0.09±0.06(stat)±0.03(sys) . These results provide a test of different models describing the nucleon spin composition and the spin transfer mechanisms. A significant transverse polarization (in the direction orthogonal to the Λ production plane) has been observed for the first time in…

PhysicsNuclear and High Energy PhysicsAngular momentum010308 nuclear & particles physicsElementary particlePolarization (waves)7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesBubble chamberHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonCharged currentLeptonBosonNuclear Physics B
researchProduct

Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam

2011

The T2K experiment observes indications of $\nu_\mu\rightarrow \nu_e$ appearance in data accumulated with $1.43\times10^{20}$ protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with $|\Delta m_{23}^2|=2.4\times10^{-3}$ eV$^2$, $\sin^2 2\theta_{23}=1$ and $\sin^2 2\theta_{13}=0$, the expected number of such events is 1.5$\pm$0.3(syst.). Under this hypothesis, the probability to observe six or more candidate events is 7$\times10^{-3}$, equivalent to 2.5$\sigma$ significance. At 90% C.L., the data are consistent with 0.03(0.04)$<\sin^2 2\theta_{13}<$ 0.28(0.34) for $\delta_{\rm CP}=0$ and a normal (inverted) hierarchy.

Particle physicsFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2CHOOZ01 natural sciencesParticle identificationHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)neutrino14.60.Pq 13.15.+g 25.30.Pt 95.55.Vj0103 physical sciencesneutrino oscillationMuon neutrino[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)ComputingMilieux_MISCELLANEOUSPhysicsNOνATribimaximal mixinghep-ex010308 nuclear & particles physicsT2K experimentFísicaT2K Collaborationparticle identificationElectron neutrinoexperimental resultsPhysical Review Letters
researchProduct

A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment

2008

We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ($\nu_\mu n\to \mu^- p$ and $\bar{\nu}_\mu p\to \mu^+ n$) using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total $\nu_\mu$ ($\bar{\nu}_\mu$) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are $\sigma^{qel}_{\nu_\mu} = (0.92 \pm 0.02 (stat) \pm 0.06 (syst))\times 10^{-38} \cm^2$ and $\sigma{qel}_{\bar{\nu}_\mu} = (0.81 \pm 0.05 (stat) \pm 0.08 (syst))\times 10^{-38} \cm…

Particle physicsPhysics and Astronomy (miscellaneous)FOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentMiniBooNEHigh Energy Physics - Experiment (hep-ex)muon neutrino; antineutrino scattering0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Bubble chamberMuon neutrinoEngineering (miscellaneous); Physics and Astronomy (miscellaneous)Nuclear Experiment010306 general physicsMass parameterEngineering (miscellaneous)Charged currentPhysics010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyFísicaDeuteriumHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct

First Muon-Neutrino Disappearance Study with an Off-Axis Beam

2012

We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment. With data corresponding to 1.43 × 10(20) protons on target, we observe 31 fully-contained single μ-like ring events in Super-Kamiokande, compared with an expectation of 104 ± 14(syst) events without neutrino oscillations. The best-fit point for two-flavor νμ → ντ oscillations is sin 2(2θ(23)) = 0.98 and |Δm(2)(32)| = 2.65 × 10(−3) eV2. The boundary of the 90% confidence region includes the points (sin2 (2θ(23)), |Δm(2)(32)|) = (1.0, 3.1 × 10(−3) eV2), (0.84, …

Nuclear and High Energy Physics530 PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.27. Clean energy01 natural sciencesNeutrino scatteringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrino010306 general physicsNeutrino oscillationQCPhysics010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyT2K experimentFísicaPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentBeam (structure)
researchProduct

Study of D*+ production in nu_mu charged current interactions in the NOMAD experiment

2002

A search was made among $\nu_\mu$ charged current events collected in the NOMAD experiment for the reaction: $\nu_\mu + N \rightarrow \mu^- + D^{\star+} + hadrons \hookrightarrow D^0 + \pi^+ \hookrightarrow K^- + \pi^+ A $D^{\star+}$ sample composed of 47 events, with 90% purity, was extracted. The $D^{\star+}$ yield in $\nu_\mu$ charged current interactions was measured to be $T = (0.99 \pm 0.15(stat.) \pm 0.11(syst.))$%. The mean fraction of the hadronic jet energy taken by the $D^{\star+}$ is $0.67 \pm 0.02(stat) \pm 0.02(syst.)$. The distributions of the fragmentation variables $z$, ${P_{T}}^2$ and $x_F$ for $D^{\star+}$ are also presented.

PhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::PhenomenologyHadronFísicaNuclear physicsFragmentation functionHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrinoNuclear ExperimentParticle Physics - ExperimentAstrophysics::Galaxy AstrophysicsCharged current
researchProduct

Neutrino production of opposite sign dimuons in the NOMAD experiment

2000

The NOMAD Collaboration presents a study of opposite sign dimuon events in the framework of Leading Order QCD. A total of 2714 neutrino- and 115 antineutrino-induced opposite sign dimuon events with $E_{\mu 1}, E_{\mu 2} > 4.5$ GeV, $15 1\;(\mbox{GeV}/\mbox{c})^{2}$ are observed %in the data from the 1995 and 1996 runs. in the Front-Calorimeter of NOMAD during the 1995 and 1996 runs. The analysis yields a value for the charm quark mass of $m_{c} = 1.3^{+0.3\;+0.3}_{-0.3\;-0.3}\;\mbox{GeV}/\m box{c}^{2}$ and for the average semileptonic branching ratio of $B_{c} = 0.095^{+0.007\;+0.014}_{-0.007\;-0.013}$. The ratio of the strange to non-strange sea in the nucleon is measured to be $\kappa = …

PhysicsNuclear and High Energy PhysicsParticle physicsMuon[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]010308 nuclear & particles physicsBranching fractionOrder (ring theory)Física01 natural sciencesCharm quarkNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Production (computer science)Neutrino010306 general physicsNucleonParticle Physics - ExperimentEnergy (signal processing)
researchProduct

Prediction of neutrino fluxes in the NOMAD experiment

2003

The method developed for the calculation of the flux and composition of the West Area Neutrino Beam used by NOMAD in its search for neutrino oscillations is described. The calculation is based on particle production rates computed using a recent version of FLUKA and modified to take into account the cross sections measured by the SPY and NA20 experiments. These particles are propagated through the beam line taking into account the material and magnetic fields they traverse. The neutrinos produced through their decays are tracked to the NOMAD detector. The fluxes of the four neutrino flavours at NOMAD are predicted with an uncertainty of about 8% for nu(mu) and nu(e), 10% for antinu(mu), and…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNeutrino oscillationInstrumentationCharged currentPhysicsNeutral current010308 nuclear & particles physicsDetectorHigh Energy Physics::PhenomenologyFísicaSolar neutrino problemMagnetic fieldBeamlineHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct

Search for a new gauge boson in $\pi^{0}$ decays

1998

A search was made for a new light gauge boson $X$ which might be produced in $\pi^{0}\to\gamma + X$ decay from neutral pions generated by 450-GeV protons in the CERN SPS neutrino target. The X's would penetrate the downstream shielding and be observed in the NOMAD detector via the Primakoff effect, in the process of $X \to\pi^{0}$ conversion in the external Coulomb field of a nucleus. With $1.45\times10^{18}$ protons on target, 20 candidate events with energy between 8 and 140 GeV were found from the analysis of neutrino data. This number is in agreement with the expectation of 18.1$\pm$2.8 background events from standard neutrino processes. A new 90% C.L. upper limit on the branching ratio…

PhysicsNuclear and High Energy PhysicsGauge bosonParticle physicsLarge Hadron ColliderBranching fractionPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyFísicaHigh Energy Physics - ExperimentPionCoulombHigh Energy Physics::ExperimentNeutrinoNuclear ExperimentPrimakoff effectEnergy (signal processing)Particle Physics - Experiment
researchProduct

Bose-Einstein correlations in charged current muon-neutrino interactions in the NOMAD experiment at CERN

2004

Bose-Einstein Correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R_G = 1.01+/-0.05(stat)+0.09-0.06(sys) fm and for the chaoticity parameter the value lambda = 0.40+/-0.03(stat)+0.01-0.06(sys). Using the Kopylov-Podgoretskii parametrization yields R_KP = 2.07+/-0.04(stat)+0.01-0.14(sys) fm and lambda_KP = 0.29+/-0.06(stat)+0.01-0.04(sys). Different paramet…

Nuclear and High Energy PhysicsParticle physicsBose-Einstein; correlations charged current; muon-neutrino interaction; NOMADHadronFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrinoRapidity010306 general physicsNuclear ExperimentCharged currentPhysicsLarge Hadron Collider010308 nuclear & particles physicsFísicaBose–Einstein correlationsCharged particleHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsParticle Physics - Experiment
researchProduct

Bulk micromegas detectors for large TPC applications

2007

A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space between modules is of particular interest for these applications. We have buil t several large bulk Micromegas detectors (27x26 cm 2 ) and we have tested them in the former HARP field cage setup wit h a magnetic field. Cosmic ray data have been acquired in a variet y of experimental conditions. Good detector performances and space point resolution have been achi…

Nuclear and High Energy PhysicsField (physics)Physics::Instrumentation and DetectorsCosmic rayddc:500.27. Clean energy01 natural sciencesNuclear physicsOptics0103 physical sciencesPoint (geometry)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physics29.40.Cs; 29.40.GxInstrumentationHARPPhysics010308 nuclear & particles physicsbusiness.industryDetectorFísicaMicroMegas detectorMagnetic fieldTPCbusinessMicromegas
researchProduct

A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment

2013

We present our new measurement of the cross-section for charm dimuon production in neutrino iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15 344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample - about 9 x 10(6) events after all analysis cuts - and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) cross-sections to similar to 2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea…

Nuclear and High Energy PhysicsStrange quarkParticle physicsCharm production; strange quark content of the nucleon; dimuon charm productionFOS: Physical sciencesCharm production ; Strange quark content of the nucleon ; Dimuon charm production ; Neutrino interactions01 natural sciencesCharm quarkHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Charm (quantum number)010306 general physicsCharged currentDimuon charm productionPhysicsQuantum chromodynamics010308 nuclear & particles physicsNeutrino interactionsFísicadimuon charm productionDeep inelastic scatteringstrange quark content of the nucleon3. Good healthCharm productionStrange quark content of the nucleonNeutrinoNucleonParticle Physics - Experiment
researchProduct

A precise measurement of the muon neutrino nucleon inclusive charged current cross section off an isoscalar target in the energy range 2.5

2008

Abstract We present a measurement of the muon neutrino–nucleon inclusive charged current cross section, off an isoscalar target, in the neutrino energy range 2.5 ⩽ E ν ⩽ 40 GeV . The significance of this measurement is its precision, ±4% in 2.5 ⩽ E ν ⩽ 10 GeV , and ±2.6% in 10 ⩽ E ν ⩽ 40 GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.

PhysicsNuclear and High Energy PhysicsParticle physicsRange (particle radiation)Muon010308 nuclear & particles physicsIsoscalarAstrophysics::High Energy Astrophysical Phenomena01 natural sciencesNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrinoHigh Energy Physics::ExperimentNeutrino010306 general physicsNucleonNeutrino oscillationNuclear ExperimentCharged current
researchProduct

A study of strange particles produced in neutrino neutral current interactions in the NOMAD experiment

2004

Results of a detailed study of strange particle production in neutrino neutral current interactions are presented using the data from the NOMAD experiment. Integral yields of neutral strange particles (K0s, Lambda, Lambda-bar) have been measured. Decays of resonances and heavy hyperons with an identified K0s or Lambda in the final state have been analyzed. Clear signals corresponding to K* and Sigma(1385) have been observed. First results on the measurements of the Lambda polarization in neutral current interactions have been obtained.

PhysicsNuclear and High Energy PhysicsParticle physicsStrange quarkNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHyperonFOS: Physical sciencesSigmaFísicaLambdaPolarization (waves)01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentNeutrino010306 general physicsNuclear ExperimentParticle Physics - Experiment
researchProduct

Search for coherent charged pion production in neutrino-carbon interactions

2005

We report the result from a search for charged-current coherent pion production induced by muon neutrinos with a mean energy of 1.3 GeV. The data are collected with a fully active scintillator detector in the K2K long-baseline neutrino oscillation experiment. No evidence for coherent pion production is observed and an upper limit of $0.60 \times 10^{-2}$ is set on the cross section ratio of coherent pion production to the total charged-current interaction at 90% confidence level. This is the first experimental limit for coherent charged pion production in the energy region of a few GeV.

Particle physicsMesonPhysics::Instrumentation and DetectorsNeutrino-nucleus reactionsFOS: Physical sciencesGeneral Physics and Astronomyddc:500.201 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)PionExperiment-HEP0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNeutrino oscillationNuclear ExperimentNuclear ExperimentCharged currentPhysicsMuonTamura Norio010308 nuclear & particles physicsNeutrino oscillationsFísica田村 詔生Production (computer science)High Energy Physics::ExperimentNeutrinoLepton
researchProduct

A measurement of coherent neutral pion production in neutrino neutral current interactions in the NOMAD experiment

2009

We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to $1.44 \times 10^6$ muon-neutrino Charged Current interactions in the energy range $2.5 \leq E_{\nu} \leq 300$ GeV. Neutrino events with only one visible $\pi^0$ in the final state are expected to result from two Neutral Current processes: coherent $\pi^0$ production, {\boldmath $\nu + {\cal A} \to \nu + {\cal A} + \pi^0$} and single $\pi^0$ production in neutrino-nucleon scattering. The signature of coherent $\pi^0$ production is an emergent $\pi^0$ almost collinear with the incident neutrino while $\pi^0$'s pro…

Particle physicsNuclear and High Energy PhysicsFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)PionCoherent pion neutrino neutral current0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Coherent pion neutrino neutral current; Nuclear and High Energy Physics010306 general physicsNuclear ExperimentCharged currentPhysicsRange (particle radiation)Large Hadron ColliderNeutral current010308 nuclear & particles physicsScatteringFísicaDeep inelastic scatteringcoherent pion ; neutrino ; neutral currentHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct

Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects

2007

This document reports on a series of experimental and theoretical studies conducted to assess the astro-particle physics potential of three future large-scale particle detectors proposed in Europe as next generation underground observatories. The proposed apparatus employ three different and, to some extent, complementary detection techniques: GLACIER (liquid Argon TPC), LENA (liquid scintillator) and MEMPHYS (\WC), based on the use of large mass of liquids as active detection media. The results of these studies are presented along with a critical discussion of the performance attainable by the three proposed approaches coupled to existing or planned underground laboratories, in relation to…

PhysicsParticle physicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsDetectorActive detectionFOS: Physical sciencesAstronomy and AstrophysicsScintillator01 natural sciencesCritical discussionHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]0103 physical sciencesLiquid argonLiquid basedHigh Energy Physics::Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrino010306 general physicsParticle Physics - PhenomenologyJournal of Cosmology and Astroparticle Physics
researchProduct

The T2K Experiment

2011

The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing {\nu}_e appearance in a {\nu}_{\mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via {\nu}_{\mu} disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande)…

Nuclear and High Energy PhysicsParticle physicsSterile neutrinoPhysics - Instrumentation and DetectorsNeutrino oscillationPhysics::Instrumentation and Detectorsddc:500.27. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Long baseline[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationphysics.ins-detInstrumentationQCPhysicsT2Khep-ex010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyT2K experimentNeutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-KamiokandeFísicaNeutrino detectorJ-PARCHigh Energy Physics::ExperimentJ-PARCSuper-KamiokandeNeutrinoSuper-KamiokandeLepton
researchProduct

Measurement of inclusive pi(0) production in the charged-current interactions of neutrinos in a 1.3-GeV wide band beam

2010

In this paper we report on the measurement of the rate of inclusive $\pi^0$ production induced by charged-current neutrino interactions in a C$_8$H$_8$ target at a mean energy of 1.3 GeV in the K2K near detector. Out of a sample of 11,606 charged current neutrino interactions, we select 479 $\pi^0$ events with two reconstructed photons. We find that the cross section for the inclusive $\pi^0$ production relative to the charged-current quasi-elastic cross section is $$\frac{\sigma_{CC\pi^0}}{\sigma_{CCQE}}=0.426\pm0.032(stat.)\pm0.035(syst.)$$ The energy dependent cross section ratio is also measured. The results are consistent with previous experiments for exclusive channels on different ta…

PhysicsNuclear and High Energy PhysicsParticle physicsMuonMesonPhysics::Instrumentation and Detectors010308 nuclear & particles physicsFísica01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsPionGargamelle0103 physical sciencesMuon neutrinoHigh Energy Physics::ExperimentNeutrino010306 general physicsCharged currentLepton
researchProduct

Search for eV (pseudo)scalar penetrating particles in the SPS neutrino beam

2000

We carried out a model-independent search for light scalar or pseudoscalar particles $a$'s (an example of which is the axion) that couple to two photons by using a photon-regeneration method at high energies allowing a substantial increase in the sensitivity to $eV$ masses.\ The experimental set-up is based on elements of the CERN West Area Neutrino Facility (WANF) beam line and theNOMAD neutrino detector.\ The new particles, if they exist, could be produced through the Primakoff effect in interactions of high energy photons, generated by the 450 $GeV$ protons in the CERN SPS neutrino target, with virtual photons from the WANF horn magnetic field.\ The particles would penetrate the downstre…

PhysicsNuclear and High Energy PhysicsParticle physicsPhoton[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]010308 nuclear & particles physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaVirtual particleFísicaScalar boson01 natural sciences7. Clean energyNuclear physicsPseudoscalarNeutrino detector0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentNeutrino010306 general physicsAxionPrimakoff effectParticle Physics - Experiment
researchProduct

Inclusive production of ρ0(770), f0(980) and f2(1270) mesons in νμ charged current interactions

2001

The inclusive production of the meson resonances $\rho^{0}(770)$, $f_0(980)$ and $f_2(1270)$ in neutrino-nucleus charged current interactions has been studied with the NOMAD detector exposed to the wide band neutrino beam generated by 450 GeV protons at the CERN SPS. For the first time the $f_{0}(980)$ meson is observed in neutrino interactions. The statistical significance of its observation is 6 standard deviations. The presence of $f_{2}(1270)$ in neutrino interactions is reliably established. The average multiplicity of these three resonances is measured as a function of several kinematic variables. The experimental results are compared to the multiplicities obtained from a simulation b…

Nuclear and High Energy PhysicsParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]MesonPhysics::Instrumentation and DetectorsNuclear TheoryNeutrino beam01 natural sciences7. Clean energyHigh Energy Physics - Experiment0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Wide bandNuclear Experiment010306 general physicsSimulation basedCharged currentPhysicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaMultiplicity (mathematics)High Energy Physics::ExperimentNeutrinoParticle Physics - ExperimentNuclear Physics B
researchProduct