0000000000673497

AUTHOR

E. Pennacchio

showing 33 related works from this author

Study of scintillation light collection, production and propagation in a 4 tonne dual-phase LArTPC

2020

The $3 \times 1 \times 1$ m$^3$ demonstrator is a dual phase liquid argon time projection chamber that has recorded cosmic rays events in 2017 at CERN. The light signal in these detectors is crucial to provide precise timing capabilities. The performances of the photon detection system, composed of five PMTs, are discussed. The collected scintillation and electroluminescence light created by passing particles has been studied in various detector conditions. In particular, the scintillation light production and propagation processes have been analyzed and compared to simulations, improving the understanding of some liquid argon properties.

photon: propagationPhotomultiplierCERN LabPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorstutkimuslaitteetPerformance of High Energy Physics DetectorPhase (waves)FOS: Physical sciencesCosmic rayNoble liquid detectors (scintillation ionization double-phase)Scintillator01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentationphysics.ins-detMathematical Physicsscintillation counterPhysicsScintillationTime projection chamberphotomultiplier010308 nuclear & particles physicsbusiness.industryhep-exDetectorScintillators scintillation and light emission processes (solid gas and liquid scintillators)Instrumentation and Detectors (physics.ins-det)time projection chamber: liquid argonNoble liquid detectors (scintillation ionization double-phase); Performance of High Energy Physics Detectors; Photon detectors for UV visible and IR photons (vacuum) (photomulti-pliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquidscintillators)Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)FIS/01 - FISICA SPERIMENTALEilmaisimetScintillation counterbusinesskosminen säteilyperformanceParticle Physics - Experiment
researchProduct

Search for the exotic Θ+ resonance in the NOMAD experiment

2006

12 pages, 16 figures.-- PACS nrs.: 13.15.+g; 13.60.Le; 13.87.Fh; 14.40.Ev.-- ISI Article Identifier: 000243973100007.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ex/0612063.-- et al.

QuarkParticle physicsPhysics and Astronomy (miscellaneous)Protonneutrino; nutrino oscillations; quarksElectromagnetic Calorimeter7. Clean energy01 natural sciencesParticle identificationHigh Energy Physics - ExperimentNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrino010306 general physicsEngineering (miscellaneous)Charged currentPhysicsNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaTransition Radiation DetectorPositive-strangenessBaryonPhotoproductionHigh Energy Physics::ExperimentNeutrinoParticle Physics - ExperimentCharged Current Interactions
researchProduct

A more sensitive search for νμ→ντ oscillations in NOMAD

1999

With additional data and improved algorithms, we have enhanced the sensitivity of our appearance search for $\numunutau$ oscillations in the NOMAD detector in the CERN-SPS wide-band neutrino beam. The search uses kinematic criteria to identify $\nutau$ charged current interactions followed by decay of the $\tau^-$ to one of several decay modes. Our ``blind'' analyses of deep-inelastic scattering data taken in 1996 and 1997, combined with consistent reanalyses of previously reported 1995 data, yield no oscillation signal. For the two-family oscillation scenario, we present the contour outlining a 90\% C.L. confidence region in the $\sin^22\theta_{\mu \tau} - \Delta m^2$ plane. At large $\Del…

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsOscillationScatteringHigh Energy Physics::ExperimentSensitivity (control systems)NeutrinoNeutrino beamNeutrino oscillationCharged currentConfidence regionPhysics Letters B
researchProduct

Volume IV The DUNE far detector single-phase technology

2020

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

Technology530 Physicsmedia_common.quotation_subjectNeutrino oscillations liquid Argon TPC DUNE technical design report single phase LArTPCElectronsFREE-ELECTRONS01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingStandard Model03 medical and health sciencesneutrino0302 clinical medicineLIQUID ARGON0103 physical sciencesGrand Unified TheoryHigh Energy PhysicsAerospace engineeringInstrumentationInstruments & InstrumentationMathematical Physicsmedia_commonPhysicsScience & Technology02 Physical Sciences010308 nuclear & particles physicsbusiness.industryDetectorLıquıd ArgonfreeNuclear & Particles PhysicsSymmetry (physics)UniverseLong baseline neutrino experiment CP violationAntimatterNeutrinobusinessEvent (particle physics)
researchProduct

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

2020

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

TechnologyHIGH-ENERGYPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detectorbeam transportNoble liquid detectors (scintillation ionization double-phase)Cms Experıment01 natural sciences7. Clean energy09 EngineeringParticle identificationHigh Energy Physics - Experiment030218 nuclear medicine & medical imagingHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineNoble liquid detectors (scintillationDetectors and Experimental TechniquesInstrumentationInstruments & Instrumentationphysics.ins-dettime resolutionMathematical PhysicsPhysics02 Physical SciencesTime projection chamberLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)double-phase)Nuclear & Particles PhysicsLIGHTNeutrinoParticle Physics - ExperimentperformanceNoble liquid detectors(scintillation ionization double-phase)noiseCERN LabLarge detector systems for particle and astroparticle physics Noble liquid detectors (scintillation ionization double-phase) Time projection Chambers (TPC)530 Physicsenergy lossTime projection chambersFOS: Physical sciencesParticle detectorNuclear physics03 medical and health sciencesneutrino: deep underground detector0103 physical sciencesionizationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]signal processingactivity reportScience & Technology010308 nuclear & particles physicshep-exLarge detector systems for particle and astroparticle physicsTime projection Chambers (TPC)530 Physiksensitivitycalibrationtime projection chamber: liquid argonExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicsingle-phase)Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation ionization double-phase); Time projection Chambers (TPC)High Energy Physics::Experimentphoton: detectorparticle identificationcharged particle: irradiationBeam (structure)
researchProduct

Search for eV (pseudo)scalar penetrating particles in the SPS neutrino beam

2000

We carried out a model-independent search for light scalar or pseudoscalar particles $a$'s (an example of which is the axion) that couple to two photons by using a photon-regeneration method at high energies allowing a substantial increase in the sensitivity to $eV$ masses.\ The experimental set-up is based on elements of the CERN West Area Neutrino Facility (WANF) beam line and theNOMAD neutrino detector.\ The new particles, if they exist, could be produced through the Primakoff effect in interactions of high energy photons, generated by the 450 $GeV$ protons in the CERN SPS neutrino target, with virtual photons from the WANF horn magnetic field.\ The particles would penetrate the downstre…

PhysicsNuclear and High Energy PhysicsParticle physicsPhoton[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]010308 nuclear & particles physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaVirtual particleFísicaScalar boson01 natural sciences7. Clean energyNuclear physicsPseudoscalarNeutrino detector0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentNeutrino010306 general physicsAxionPrimakoff effectParticle Physics - Experiment
researchProduct

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

2020

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

Neutrino Oscillations. Neutrino detectors.Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detector01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - Experimentcharged currentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino/e: particle identificationNeutrino detectorsDetectors and Experimental Techniquesphysics.ins-detCharged currentneutrino: interactionInformáticaPhysicsTelecomunicacionesNeutrino oscillationsPhysicsNeutrino interactions neural network DUNE Deep Underground Neutrino ExperimentInstrumentation and Detectors (physics.ins-det)Experiment (hep-ex)Neutrino detectorPhysical SciencesCP violationNeutrinoParticle Physics - ExperimentParticle physicsdata analysis method530 Physicsneural networkAstrophysics::High Energy Astrophysical PhenomenaCONSERVATIONFOS: Physical sciencesAstronomy & AstrophysicsDeep Learningneutrino: deep underground detectorneutrino physics0103 physical sciencesNeutrino Oscillations. Neutrino detectorsObject DetectionNeutrinoCP: violationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationneutrino/mu: particle identificationIOUScience & TechnologyDUNENeutrino interactions010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyFísicaNeutrino InteractionDetector530 PhysiksensitivityefficiencyHigh Energy Physics::ExperimentElectron neutrino
researchProduct

Search for νμ→νe oscillations in the NOMAD experiment

2003

We present the results of a search for vμ → v e oscillations in the NOMAD experiment at CERN. The experiment looked for the appearance of ve in a predominantly vμ wide-band neutrino beam at the CERN SPS. No evidence for oscillations was found. The 90% confidence limits obtained are Δm2 < 0.4 eV 2 for maximal mixing and sin2(2θ) < 1.4 × 10-3 for large Δm2. This result excludes the LSND allowed region of oscillation parameters with Δm2 ≳ 10 eV2. © 2003 Elsevier B.V. All rights reserved.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsOscillationNeutrino oscillationsNeutrino beam01 natural sciencesNuclear physics0103 physical sciencesEnergy spectrumNeutrino010306 general physicsNeutrino oscillationCharged current
researchProduct

A Search for Single Photon Events in Neutrino Interactions

2011

We present a search for neutrino induced events containing a single, exclusive photon using data from the NOMAD experiment at the CERN SPS where the average energy of the neutrino flux is ≃25 GeV. The search is motivated by an excess of electron-like events in the 200-475 MeV energy region as reported by the MiniBooNE experiment. In NOMAD, photons are identified via their conversion to e + e - in an active target embedded in a magnetic field. The background to the single photon signal is dominated by the asymmetric decay of neutral pions produced either in a coherent neutrino-nucleus interaction, or in a neutrino-nucleon neutral current deep inelastic scattering, or in an interaction occurr…

Nuclear and High Energy PhysicsParticle physicsPhotonFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsMiniBooNENeutral currentHigh Energy Physics - Experiment (hep-ex)PionHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Coherent; Neutral current; Neutrino; Pion; Single photon; Nuclear and High Energy Physics010306 general physicsCharged currentPhysicsSingle photon; Neutrino; Neutral current; Coherent; PionNeutral current010308 nuclear & particles physicsFísicaDeep inelastic scatteringsingle photon; neutrino; neutral current; coherent; pionHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]PionHigh Energy Physics::ExperimentSingle photonNeutrinoCoherentEvent (particle physics)Particle Physics - Experiment
researchProduct

Production properties of $K*(892)\pm$ vector mesons and their spin alignment as measured in the NOMAD experiment

2006

First measurements of K*(892) mesons production properties and their spin alignment in nu_mu charged current (CC) and neutral current (NC) interactions are presented. The analysis of the full data sample of the NOMAD experiment is performed in different kinematic regions. For K*+ and K*- mesons produced in nu_mu CC interactions and decaying into K0 pi+/- we have found the following yields per event: (2.6 +/- 0.2 (stat.) +/- 0.2 (syst.))% and (1.6 +/- 0.1 (stat.) +/- 0.1 (syst.))% respectively, while for the K*+ and K*- mesons produced in nu NC interactions the corresponding yields per event are: (2.5 +/- 0.3 (stat.) +/- 0.3 (syst.))% and (1.0 +/- 0.3 (stat.) +/- 0.2 (syst.))%. The results o…

Particle physicsPhysics and Astronomy (miscellaneous)MesonAnalytical chemistryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentEngineering (miscellaneous)Charged currentSpin-½PhysicsAnnihilationNeutral current010308 nuclear & particles physicsFísicaFull dataProduction (computer science)High Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Precision measurement of scaled momentum, charge multiplicity, and thrust in νμN and interactions

1999

By focusing on the notion of electronic document, we differentiate two evolutions which are useful to distinct titles: on the one hand are the documents, which have value of reference. Its administrator will take care to preserve its integrity and its context of production which is strongly significant. On the other hand are resources, evolutionary elements by nature, which the user must be able to appropriate and who must thus be placed at the disposal so that the production is erased, to focus on a logic of exploitation and service.

PhysicsNuclear and High Energy PhysicsParticle physicsOverlineCoherence effectElectronic documentThrustMultiplicity (chemistry)Charged currentPhysics Letters B
researchProduct

A study of strange particle production in nu(mu) charged current interactions in the NOMAD experiment

2001

A study of strange particle production in $\nu_\mu$ charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles ($K^0_s, \Lambda, \bar{\Lambda}$) have been measured. Mean multiplicities are reported as a function of the event kinematic variables $E_\nu$, $W^2$ and $Q^2$ as well as of the variables describing particle behaviour within a hadronic jet: $x_F$, $z$ and $p_T^2$. Decays of resonances and heavy hyperons with identified $K^0_s$ and $\Lambda$ in the final state have been analyzed. Clear signals corresponding to $\rm {K^\star}^\pm$ $\rm {\Sigma^\star}^\pm$, $\rm \Xi^-$ and $\rm \Sigma^0$ have been observed. A study of s…

PhysicsNuclear and High Energy PhysicsStrange quarkParticle physics010308 nuclear & particles physicsStar (game theory)HadronHyperonFísicaLambda01 natural sciencesNuclear physics0103 physical sciencesneutrino interactions; strange particle productionProduction (computer science)High Energy Physics::ExperimentNeutrino010306 general physicsNuclear ExperimentCharged currentParticle Physics - Experiment
researchProduct

Search for heavy neutrinos mixing with tau neutrinos

2001

We report on a search for heavy neutrinos ($\nus$) produced in the decay $D_s\to \tau \nus$ at the SPS proton target followed by the decay $\nudecay$ in the NOMAD detector. Both decays are expected to occur if $\nus$ is a component of $\nu_{\tau}$.\ From the analysis of the data collected during the 1996-1998 runs with $4.1\times10^{19}$ protons on target, a single candidate event consistent with background expectations was found. This allows to derive an upper limit on the mixing strength between the heavy neutrino and the tau neutrino in the $\nus$ mass range from 10 to 190 $\rm MeV$. Windows between the SN1987a and Big Bang Nucleosynthesis lower limits and our result are still open for f…

Nuclear and High Energy PhysicsParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]ProtonFOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Big Bang nucleosynthesisTau neutrino0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsMixing (physics)PhysicsRange (particle radiation)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísica3. Good healthneutrino mixing; neutrino decayHigh Energy Physics::ExperimentNeutrinoAnomaly (physics)Event (particle physics)Particle Physics - Experiment
researchProduct

The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment.

2014

The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (M…

Physics::Instrumentation and Detectorsfar detectorkaukoputket ja teleskoopit7. Clean energyviolation [CP]CP violation; Neutrino Detectors and Telescopes; Oscillation; Nuclear and High Energy PhysicsHigh Energy Physics - Phenomenology (hep-ph)Observatorymass: hierarchy [neutrino]detector [neutrino]QCPhysicsTime projection chamberLarge Hadron ColliderOscillationmagnetization [iron]oscillation [neutrino]High Energy Physics - PhenomenologyCP violationliquid argon [time projection chamber]CP violationNeutrinoParticle physicsNuclear and High Energy PhysicsCERN Lab530 PhysicseducationFOS: Physical sciencesddc:500.2oscillation [flavor]114 Physical sciencesNuclear physicsphase spacenear detectorstatistical analysisiron [calorimeter]Particle Physics - PhenomenologyAstroparticle physicsNeutrino Detectors and Telescopesta114Físicaflavor [neutrino]CP [phase]CERN SPSMODELproposed [observatory]Oscillation13. Climate actionPhase space[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]gas [argon]beam [neutrino]High Energy Physics::ExperimentMATTERneutrino detectorsCP violation.
researchProduct

Updated Results from the $\nu_{\tau}$ Appearance Search in NOMAD

2000

Updated results from the appearance searches for $\numunutau$ and $\nuenutau$ oscillations in the full NOMAD data sample are reported. The increased data and the use of more refined kinematic schemes for the $\nutau$ CC selection allow a significant improvement of the overall sensitivity. The ``blind analysis" of both the deep-inelastic and the low multiplicity samples yields no evidence for an oscillation signal. In the two-family oscillation scenario, this sets a 90\% C.L. region in the $\sin^22\theta_{\mu\tau} - \Delta m^2$ plane which includes $\sin^22\theta_{\mu\tau}\ <\ 4.4\times10^{-4}$ at large $\Delta m^2$ and $\Delta m^2 < 0.8$ eV$^2$/$c^4$ at $\sin^22\theta_{\mu \tau}=1$. The cor…

PhysicsNuclear and High Energy PhysicsParticle physicsOscillationFísicaMultiplicity (mathematics)Sensitivity (control systems)Neutrino oscillationCharged currentParticle Physics - Experiment
researchProduct

Inclusive production of ρ0(770), f0(980) and f2(1270) mesons in νμ charged current interactions

2001

The inclusive production of the meson resonances $\rho^{0}(770)$, $f_0(980)$ and $f_2(1270)$ in neutrino-nucleus charged current interactions has been studied with the NOMAD detector exposed to the wide band neutrino beam generated by 450 GeV protons at the CERN SPS. For the first time the $f_{0}(980)$ meson is observed in neutrino interactions. The statistical significance of its observation is 6 standard deviations. The presence of $f_{2}(1270)$ in neutrino interactions is reliably established. The average multiplicity of these three resonances is measured as a function of several kinematic variables. The experimental results are compared to the multiplicities obtained from a simulation b…

Nuclear and High Energy PhysicsParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]MesonPhysics::Instrumentation and DetectorsNuclear TheoryNeutrino beam01 natural sciences7. Clean energyHigh Energy Physics - Experiment0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Wide bandNuclear Experiment010306 general physicsSimulation basedCharged currentPhysicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaMultiplicity (mathematics)High Energy Physics::ExperimentNeutrinoParticle Physics - ExperimentNuclear Physics B
researchProduct

Limit on νe→ντ oscillations from the NOMAD experiment

2000

Abstract In the context of a two-flavour approximation we reinterpret the published NOMAD limit on ν μ → ν τ oscillations in terms of ν e → ν τ oscillations. At 90% C.L. we obtain sin 2 2θ eτ 5.2×10 −2 for large Δm 2 , while for sin 2 2 θ eτ =1 the confidence region includes Δm 2 2 / c 4 .

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physics0103 physical sciencesContext (language use)Limit (mathematics)Neutrino beam010306 general physicsNeutrino oscillation01 natural sciencesCharged currentPhysics Letters B
researchProduct

New results on a search for a 33.9 MeV/c2 neutral particle from π+ decay in the NOMAD experiment

2002

We report on a direct search in NOMAD for a new 33.9 MeV/c^2 neutral particle (X) produced in pion decay in flight, pi-->mu_X followed by the decay X -->nu e^+e^-. Both decays are postulated to occur to explain the time anomaly observed by the KARMEN experiment. From the analysis of the data collected during the 1996?1998 runs with 4.1×10^19 protons on target, a single candidate event consistent with background expectations was found. The search is sensitive to a pion branching ratio BR(pi-->muX >3.7×10^-15, significantly smaller than previous experimental limits.

PhysicsNuclear and High Energy PhysicsParticle physicsNeutrino decay; Neutrino mixing; Nuclear and High Energy PhysicsBranching fractionNeutrino mixing; Neutrino decayNuclear physicsPionPiDirect searchNeutrino mixingAnomaly (physics)Neutral particleEvent (particle physics)Neutrino decayKARMENPhysics Letters B
researchProduct

A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers

2018

A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and offers several advantages compared to the traditional single-phase liquid argon TPCs. A 4.2 tonne dual-phase liquid argon TPC prototype, the largest of its kind, with an active volume of \three has been constructed and operated at CERN. In this paper we describe in detail the experimental setup and detector components as well as report on the operation experience. We also present the first results on the achieved charge amplification, prompt scintillat…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorshiukkasfysiikka01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNeutrino detectorHigh Energy Physics - Experiment (hep-ex)Ionization[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectorsDetectors and Experimental TechniquesNuclear ExperimentInstrumentationphysics.ins-detMathematical Physicsgas: admixtureLarge Hadron ColliderDetectorneutriinotInstrumentation and Detectors (physics.ins-det)experimental equipmentneutrino: detectorNeutrino detectorTime projection chamberilmaisimettime projection chambersLarge scale cryogenic liquid detectors [8]photon: yieldParticle Physics - ExperimentperformanceMaterials scienceCERN LabTime projection chambersParticle tracking detectors (Gaseous detectors)ionization: yieldparticle tracking detectors (gaseous detectors)tutkimuslaitteetFOS: Physical scienceschemistry.chemical_elementNeutrino detectors; Particle tracking detectors (Gaseous detectors); Time projection chambersOptics0103 physical sciencesDeep Underground Neutrino Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsScintillationArgon010308 nuclear & particles physicsbusiness.industryhep-extime projection chamber: liquid argonchemistrymuon: cosmic radiationHigh Energy Physics::ExperimentbusinessTonneneutrino detectors
researchProduct

Volume I. Introduction to DUNE

2020

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

detector: technologydeep underground detector [neutrino]530 PhysicsPhysics::Instrumentation and DetectorsData managementmedia_common.quotation_subjectfar detector610Long baseline neutrino experiment CP violation01 natural sciences030218 nuclear medicine & medical imagingNeutrino oscillations. Neutrino Detectors. CP violation. Matter stabilitydesign [detector]03 medical and health sciencesneutrinoneutrino: deep underground detector0302 clinical medicinenear detector0103 physical sciencesDeep Underground Neutrino Experimentddc:610Neutrino oscillationInstrumentationdetector: designMathematical Physicsactivity reportmedia_common010308 nuclear & particles physicsbusiness.industryNeutrino oscillations. Neutrino Detectors. CP violation. Matter stability.DetectorVolume (computing)Modular designtime projection chamber: liquid argonUniversetechnology [detector]liquid argon [time projection chamber]Systems engineeringHigh Energy Physics::ExperimentNeutrino oscillations DUNE technical design report executive summary detector technologiesdata managementNeutrinobusiness
researchProduct

Measurement of the polarization in νμ charged current interactions in the NOMAD experiment

2001

The Λ polarization in νμ charged current interactions has been measured in the NOMAD experiment. The event sample (8087 reconstructed Λ 's) is more than an order of magnitude larger than that of previous bubble chamber experiments, while the quality of event reconstruction is comparable. We observe negative polarization along the W -boson direction which is enhanced in the target fragmentation region: Px(xF 0)=−0.09±0.06(stat)±0.03(sys) . These results provide a test of different models describing the nucleon spin composition and the spin transfer mechanisms. A significant transverse polarization (in the direction orthogonal to the Λ production plane) has been observed for the first time in…

PhysicsNuclear and High Energy PhysicsAngular momentum010308 nuclear & particles physicsElementary particlePolarization (waves)7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesBubble chamberHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonCharged currentLeptonBosonNuclear Physics B
researchProduct

A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment

2008

We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ($\nu_\mu n\to \mu^- p$ and $\bar{\nu}_\mu p\to \mu^+ n$) using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total $\nu_\mu$ ($\bar{\nu}_\mu$) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are $\sigma^{qel}_{\nu_\mu} = (0.92 \pm 0.02 (stat) \pm 0.06 (syst))\times 10^{-38} \cm^2$ and $\sigma{qel}_{\bar{\nu}_\mu} = (0.81 \pm 0.05 (stat) \pm 0.08 (syst))\times 10^{-38} \cm…

Particle physicsPhysics and Astronomy (miscellaneous)FOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentMiniBooNEHigh Energy Physics - Experiment (hep-ex)muon neutrino; antineutrino scattering0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Bubble chamberMuon neutrinoEngineering (miscellaneous); Physics and Astronomy (miscellaneous)Nuclear Experiment010306 general physicsMass parameterEngineering (miscellaneous)Charged currentPhysics010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyFísicaDeuteriumHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct

Study of D*+ production in nu_mu charged current interactions in the NOMAD experiment

2002

A search was made among $\nu_\mu$ charged current events collected in the NOMAD experiment for the reaction: $\nu_\mu + N \rightarrow \mu^- + D^{\star+} + hadrons \hookrightarrow D^0 + \pi^+ \hookrightarrow K^- + \pi^+ A $D^{\star+}$ sample composed of 47 events, with 90% purity, was extracted. The $D^{\star+}$ yield in $\nu_\mu$ charged current interactions was measured to be $T = (0.99 \pm 0.15(stat.) \pm 0.11(syst.))$%. The mean fraction of the hadronic jet energy taken by the $D^{\star+}$ is $0.67 \pm 0.02(stat) \pm 0.02(syst.)$. The distributions of the fragmentation variables $z$, ${P_{T}}^2$ and $x_F$ for $D^{\star+}$ are also presented.

PhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::PhenomenologyHadronFísicaNuclear physicsFragmentation functionHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrinoNuclear ExperimentParticle Physics - ExperimentAstrophysics::Galaxy AstrophysicsCharged current
researchProduct

Neutrino production of opposite sign dimuons in the NOMAD experiment

2000

The NOMAD Collaboration presents a study of opposite sign dimuon events in the framework of Leading Order QCD. A total of 2714 neutrino- and 115 antineutrino-induced opposite sign dimuon events with $E_{\mu 1}, E_{\mu 2} > 4.5$ GeV, $15 1\;(\mbox{GeV}/\mbox{c})^{2}$ are observed %in the data from the 1995 and 1996 runs. in the Front-Calorimeter of NOMAD during the 1995 and 1996 runs. The analysis yields a value for the charm quark mass of $m_{c} = 1.3^{+0.3\;+0.3}_{-0.3\;-0.3}\;\mbox{GeV}/\m box{c}^{2}$ and for the average semileptonic branching ratio of $B_{c} = 0.095^{+0.007\;+0.014}_{-0.007\;-0.013}$. The ratio of the strange to non-strange sea in the nucleon is measured to be $\kappa = …

PhysicsNuclear and High Energy PhysicsParticle physicsMuon[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]010308 nuclear & particles physicsBranching fractionOrder (ring theory)Física01 natural sciencesCharm quarkNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Production (computer science)Neutrino010306 general physicsNucleonParticle Physics - ExperimentEnergy (signal processing)
researchProduct

Prediction of neutrino fluxes in the NOMAD experiment

2003

The method developed for the calculation of the flux and composition of the West Area Neutrino Beam used by NOMAD in its search for neutrino oscillations is described. The calculation is based on particle production rates computed using a recent version of FLUKA and modified to take into account the cross sections measured by the SPY and NA20 experiments. These particles are propagated through the beam line taking into account the material and magnetic fields they traverse. The neutrinos produced through their decays are tracked to the NOMAD detector. The fluxes of the four neutrino flavours at NOMAD are predicted with an uncertainty of about 8% for nu(mu) and nu(e), 10% for antinu(mu), and…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNeutrino oscillationInstrumentationCharged currentPhysicsNeutral current010308 nuclear & particles physicsDetectorHigh Energy Physics::PhenomenologyFísicaSolar neutrino problemMagnetic fieldBeamlineHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct

Search for a new gauge boson in $\pi^{0}$ decays

1998

A search was made for a new light gauge boson $X$ which might be produced in $\pi^{0}\to\gamma + X$ decay from neutral pions generated by 450-GeV protons in the CERN SPS neutrino target. The X's would penetrate the downstream shielding and be observed in the NOMAD detector via the Primakoff effect, in the process of $X \to\pi^{0}$ conversion in the external Coulomb field of a nucleus. With $1.45\times10^{18}$ protons on target, 20 candidate events with energy between 8 and 140 GeV were found from the analysis of neutrino data. This number is in agreement with the expectation of 18.1$\pm$2.8 background events from standard neutrino processes. A new 90% C.L. upper limit on the branching ratio…

PhysicsNuclear and High Energy PhysicsGauge bosonParticle physicsLarge Hadron ColliderBranching fractionPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyFísicaHigh Energy Physics - ExperimentPionCoulombHigh Energy Physics::ExperimentNeutrinoNuclear ExperimentPrimakoff effectEnergy (signal processing)Particle Physics - Experiment
researchProduct

LBNO-DEMO: Large-scale neutrino detector demonstrators for phased performance assessment in view of a long-baseline oscillation experiment

2014

In June 2012, an Expression of Interest for a long-baseline experiment (LBNO) has been submitted to the CERN SPSC. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the detector associated systematic errors. The proposed $6\times 6\times 6$m$^3$ DLAr is an industrial prototype of the design discussed in the EoI and scalable…

High Energy Physics - Experiment (hep-ex)Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]FOS: Physical sciencesHigh Energy Physics::ExperimentInstrumentation and Detectors (physics.ins-det)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Physics - Experiment
researchProduct

Bose-Einstein correlations in charged current muon-neutrino interactions in the NOMAD experiment at CERN

2004

Bose-Einstein Correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R_G = 1.01+/-0.05(stat)+0.09-0.06(sys) fm and for the chaoticity parameter the value lambda = 0.40+/-0.03(stat)+0.01-0.06(sys). Using the Kopylov-Podgoretskii parametrization yields R_KP = 2.07+/-0.04(stat)+0.01-0.14(sys) fm and lambda_KP = 0.29+/-0.06(stat)+0.01-0.04(sys). Different paramet…

Nuclear and High Energy PhysicsParticle physicsBose-Einstein; correlations charged current; muon-neutrino interaction; NOMADHadronFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrinoRapidity010306 general physicsNuclear ExperimentCharged currentPhysicsLarge Hadron Collider010308 nuclear & particles physicsFísicaBose–Einstein correlationsCharged particleHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsParticle Physics - Experiment
researchProduct

A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment

2013

We present our new measurement of the cross-section for charm dimuon production in neutrino iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15 344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample - about 9 x 10(6) events after all analysis cuts - and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) cross-sections to similar to 2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea…

Nuclear and High Energy PhysicsStrange quarkParticle physicsCharm production; strange quark content of the nucleon; dimuon charm productionFOS: Physical sciencesCharm production ; Strange quark content of the nucleon ; Dimuon charm production ; Neutrino interactions01 natural sciencesCharm quarkHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Charm (quantum number)010306 general physicsCharged currentDimuon charm productionPhysicsQuantum chromodynamics010308 nuclear & particles physicsNeutrino interactionsFísicadimuon charm productionDeep inelastic scatteringstrange quark content of the nucleon3. Good healthCharm productionStrange quark content of the nucleonNeutrinoNucleonParticle Physics - Experiment
researchProduct

A precise measurement of the muon neutrino nucleon inclusive charged current cross section off an isoscalar target in the energy range 2.5

2008

Abstract We present a measurement of the muon neutrino–nucleon inclusive charged current cross section, off an isoscalar target, in the neutrino energy range 2.5 ⩽ E ν ⩽ 40 GeV . The significance of this measurement is its precision, ±4% in 2.5 ⩽ E ν ⩽ 10 GeV , and ±2.6% in 10 ⩽ E ν ⩽ 40 GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.

PhysicsNuclear and High Energy PhysicsParticle physicsRange (particle radiation)Muon010308 nuclear & particles physicsIsoscalarAstrophysics::High Energy Astrophysical Phenomena01 natural sciencesNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrinoHigh Energy Physics::ExperimentNeutrino010306 general physicsNucleonNeutrino oscillationNuclear ExperimentCharged current
researchProduct

A study of strange particles produced in neutrino neutral current interactions in the NOMAD experiment

2004

Results of a detailed study of strange particle production in neutrino neutral current interactions are presented using the data from the NOMAD experiment. Integral yields of neutral strange particles (K0s, Lambda, Lambda-bar) have been measured. Decays of resonances and heavy hyperons with an identified K0s or Lambda in the final state have been analyzed. Clear signals corresponding to K* and Sigma(1385) have been observed. First results on the measurements of the Lambda polarization in neutral current interactions have been obtained.

PhysicsNuclear and High Energy PhysicsParticle physicsStrange quarkNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHyperonFOS: Physical sciencesSigmaFísicaLambdaPolarization (waves)01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentNeutrino010306 general physicsNuclear ExperimentParticle Physics - Experiment
researchProduct

A measurement of coherent neutral pion production in neutrino neutral current interactions in the NOMAD experiment

2009

We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to $1.44 \times 10^6$ muon-neutrino Charged Current interactions in the energy range $2.5 \leq E_{\nu} \leq 300$ GeV. Neutrino events with only one visible $\pi^0$ in the final state are expected to result from two Neutral Current processes: coherent $\pi^0$ production, {\boldmath $\nu + {\cal A} \to \nu + {\cal A} + \pi^0$} and single $\pi^0$ production in neutrino-nucleon scattering. The signature of coherent $\pi^0$ production is an emergent $\pi^0$ almost collinear with the incident neutrino while $\pi^0$'s pro…

Particle physicsNuclear and High Energy PhysicsFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)PionCoherent pion neutrino neutral current0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Coherent pion neutrino neutral current; Nuclear and High Energy Physics010306 general physicsNuclear ExperimentCharged currentPhysicsRange (particle radiation)Large Hadron ColliderNeutral current010308 nuclear & particles physicsScatteringFísicaDeep inelastic scatteringcoherent pion ; neutrino ; neutral currentHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct

Volume III. DUNE far detector technical coordination

2020

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

Technology530 PhysicsPhysics::Instrumentation and Detectorsmedia_common.quotation_subjectContext (language use)01 natural sciences09 Engineering030218 nuclear medicine & medical imagingneutrino03 medical and health sciences0302 clinical medicine0103 physical sciencesGrand Unified TheoryDeep Underground Neutrino ExperimentHigh Energy PhysicsInstruments & InstrumentationNeutrino oscillations liquid Argon TPC technical design report technical coordinationInstrumentationMathematical Physicsmedia_commonScience & Technology02 Physical Sciences010308 nuclear & particles physicsDetectorVolume (computing)530 PhysikNuclear & Particles PhysicsUniverseSystems engineeringHigh Energy Physics::ExperimentState (computer science)NeutrinoLong baseline neutrino experiment CP violationJournal of Instrumentation
researchProduct