0000000000674591

AUTHOR

Ivan Peshev

Thiourea Based Tritopic Halogen Bonding Acceptors

Series of thiourea based tritopic receptor molecules were synthesized to be used as building blocks for halogen-bonded assemblies. Here 16 new receptor molecules were synthesized from two different 2,4,6-trialkyl-1,3,5-tris(bromomethyl)benzene starting materials via tris(isothiocyanatomethyl)benzene intermediates. The alkyl substituents in the benzene ring showed to be important for isothiocyanate group formation instead of competing thiocyanate group. The synthesis route allowed us to synthesize the isothiocyanate intermediates and further the receptor molecules without typically used and highly toxic thiophosgene. Synthesized receptor molecules were used to study their halogen bond accept…

research product

Coordination of the biliverdin D-ring in bacteriophytochromes.

Phytochrome proteins translate light into biochemical signals in plants, fungi and microorganisms. Light cues are absorbed by a bilin chromophore, leading to an isomerization and a rotation of the D-ring. This relays the signal to the protein matrix. A set of amino acids, which is conserved across the phytochrome superfamily, holds the chromophore in the binding pocket. However, the functional role of many of these amino acids is not yet understood. Here, we investigate the hydrogen bonding network which surrounds the D-ring of the chromophore in the resting (Pr) state. We use UV/vis spectroscopy, infrared absorption spectroscopy and X-ray crystallography to compare the photosensory domains…

research product