0000000000676555

AUTHOR

Sunny Chauhan

0000-0003-2929-675x

Hybrid coincidence and common fixed point theorems in Menger probabilistic metric spaces under a strict contractive condition with an application

Abstract We prove some coincidence and common fixed point theorems for two hybrid pairs of mappings in Menger spaces satisfying a strict contractive condition. An illustrative example is given to support the genuineness of our extension besides deriving some related results. Then, we establish the corresponding common fixed point theorems in metric spaces. Finally, we utilize our main result to obtain the existence of a common solution for a system of Volterra type integral equations.

research product

Fixed points of weakly compatible mappings satisfying generalized $\varphi$-weak contractions

In this paper, utilizing the notion of the common limit range property, we prove some new integral type common fixed point theorems for weakly compatible mappings satisfying a \(\varphi \)-weak contractive condition in metric spaces. Moreover, we extend our results to four finite families of self mappings, and furnish an illustrative example and an application to support our main theorem. Our results improve, extend, and generalize well-known results on the topic in the literature.

research product

Unified Metrical Common Fixed Point Theorems in 2-Metric Spaces via an Implicit Relation

We prove some common fixed point theorems for two pairs of weakly compatible mappings in 2-metric spaces via an implicit relation. As an application to our main result, we derive Bryant's type generalized fixed point theorem for four finite families of self-mappings which can be utilized to derive common fixed point theorems involving any finite number of mappings. Our results improve and extend a host of previously known results. Moreover, we study the existence of solutions of a nonlinear integral equation.

research product

Some Integral Type Fixed-Point Theorems and an Application to Systems of Functional Equations

In this paper, we prove a new common fixed point theorem for four self mappings by using the notions of compatibility and subsequential continuity (alternate subcompatibility and reciprocal continuity) in metric spaces satisfying a general contractive condition of integral type. We give some examples to support the useability of our main result. Also, we obtain some fixed point theorems of Gregus type for four mappings satisfying a strict general contractive condition of integral type in metric spaces. We conclude the paper with an application of our main result to solvability of systems of functional equations.

research product

Fixed point theorems for non-self mappings in symmetric spaces under φ-weak contractive conditions and an application to functional equations in dynamic programming

In this paper, we prove some common fixed point theorems for two pairs of non-self weakly compatible mappings enjoying common limit range property, besides satisfying a generalized phi-weak contractive condition in symmetric spaces. We furnish some illustrative examples to highlight the realized improvements in our results over the corresponding relevant results of the existing literature. We extend our main result to four finite families of mappings in symmetric spaces using the notion of pairwise commuting mappings. Finally, we utilize our results to discuss the existence and uniqueness of solutions of certain system of functional equations arising in dynamic programming.

research product

Some integral type fixed point theorems in Non-Archimedean Menger PM-Spaces with common property (E.A) and application of functional equations in dynamic programming

In this paper, we prove some integral type common fixed point theorems for weakly compatible mappings in Non-Archimedean Menger PM-spaces employing common property (E.A). Some examples are furnished which demonstrate the validity of our results. We extend our main result to four finite families of self-mappings employing the notion of pairwise commuting. Moreover, we give an application which supports the usability of our main theorem.

research product

Coincidence and common fixed points of weakly reciprocally continuous and compatible hybrid mappings via an implicit relation and an application

Using the hybrid version of the notion of weakly reciprocal continuous mappings due to Gairola et al. [Coincidence and fixed point for weakly reciprocally continuous single-valued and multi-valued maps, Demonstratio Math. (2013/2014), accepted], we prove a coincidence and common fixed point theorem for a hybrid pair of compatible mappings via an implicit relation. Our main result improves and generalizes a host of previously known theorems. As an application, we give a homotopy theorem which supports our main result.

research product

A Coupled Fixed Point Theorem in Fuzzy Metric Space Satisfying ϕ-Contractive Condition

The intent of this paper is to prove a coupled fixed point theorem for two pairs of compatible and subsequentially continuous (alternately subcompatible and reciprocally continuous) mappings, satisfyingϕ-contractive conditions in a fuzzy metric space. We also furnish some illustrative examples to support our results.

research product