Hybrid coincidence and common fixed point theorems in Menger probabilistic metric spaces under a strict contractive condition with an application
Abstract We prove some coincidence and common fixed point theorems for two hybrid pairs of mappings in Menger spaces satisfying a strict contractive condition. An illustrative example is given to support the genuineness of our extension besides deriving some related results. Then, we establish the corresponding common fixed point theorems in metric spaces. Finally, we utilize our main result to obtain the existence of a common solution for a system of Volterra type integral equations.
Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces
Abstract We prove some coincidence and common fixed point results for three mappings satisfying a generalized weak contractive condition in ordered partial metric spaces. As application of the presented results, we give a unique fixed point result for a mapping satisfying a weak cyclical contractive condition. We also provide some illustrative examples. MSC:47H10, 54H25.
Further generalization of fixed point theorems in Menger PM-spaces
In this work, we establish some fixed point theorems by revisiting the notion of ψ-contractive mapping in Menger PM-spaces. One of our results (namely, Theorem 2.3) may be viewed as a possible answer to the problem of existence of a fixed point for generalized type contractive mappings in M-complete Menger PM-spaces under arbitrary t-norm. Some examples are furnished to demonstrate the validity of the obtained results.