0000000000676565
AUTHOR
J. Karvanen
Simplifying Probabilistic Expressions in Causal Inference
Obtaining a non-parametric expression for an interventional distribution is one of the most fundamental tasks in causal inference. Such an expression can be obtained for an identifiable causal effect by an algorithm or by manual application of do-calculus. Often we are left with a complicated expression which can lead to biased or inefficient estimates when missing data or measurement errors are involved. We present an automatic simplification algorithm that seeks to eliminate symbolically unnecessary variables from these expressions by taking advantage of the structure of the underlying graphical model. Our method is applicable to all causal effect formulas and is readily available in the …
Enhancing identification of causal effects by pruning
Causal models communicate our assumptions about causes and effects in real-world phe- nomena. Often the interest lies in the identification of the effect of an action which means deriving an expression from the observed probability distribution for the interventional distribution resulting from the action. In many cases an identifiability algorithm may return a complicated expression that contains variables that are in fact unnecessary. In practice this can lead to additional computational burden and increased bias or inefficiency of estimates when dealing with measurement error or missing data. We present graphical criteria to detect variables which are redundant in identifying causal effe…
Identifying Causal Effects via Context-specific Independence Relations
Causal effect identification considers whether an interventional probability distribution can be uniquely determined from a passively observed distribution in a given causal structure. If the generating system induces context-specific independence (CSI) relations, the existing identification procedures and criteria based on do-calculus are inherently incomplete. We show that deciding causal effect non-identifiability is NP-hard in the presence of CSIs. Motivated by this, we design a calculus and an automated search procedure for identifying causal effects in the presence of CSIs. The approach is provably sound and it includes standard do-calculus as a special case. With the approach we can …