0000000000676568

AUTHOR

Samuel Boissière

0000-0002-5901-6838

Some families of big and stable bundles on $K3$ surfaces and on their Hilbert schemes of points

Here we investigate meaningful families of vector bundles on a very general polarized $K3$ surface $(X,H)$ and on the corresponding Hyper--Kaehler variety given by the Hilbert scheme of points $X^{[k]}:= {\rm Hilb}^k(X)$, for any integer $k \geqslant 2$. In particular, we prove results concerning bigness and stability of such bundles. First, we give conditions on integers $n$ such that the twist of the tangent bundle of $X$ by the line bundle $nH$ is big and stable on~$X$; we then prove a similar result for a natural twist of the tangent bundle of $X^{[k]}$. Next, we prove global generation, bigness and stability results for tautological bundles on $X^{[k]}$ arising either from line bundles…

research product

Universal formulas for characteristic classes on the Hilbert schemes of points on surfaces

This article can be seen as a sequel to the first author's article ``Chern classes of the tangent bundle on the Hilbert scheme of points on the affine plane'', where he calculates the total Chern class of the Hilbert schemes of points on the affine plane by proving a result on the existence of certain universal formulas expressing characteristic classes on the Hilbert schemes in term of Nakajima's creation operators. The purpose of this work is (at least) two-fold. First of all, we clarify the notion of ``universality'' of certain formulas about the cohomology of the Hilbert schemes by defining a universal algebra of creation operators. This helps us to reformulate and extend a lot of the f…

research product

On the Neron-Severi group of surfaces with many lines

For a binary quartic form $\phi$ without multiple factors, we classify the quartic K3 surfaces $\phi(x,y)=\phi(z,t)$ whose Neron-Severi group is (rationally) generated by lines. For generic binary forms $\phi$, $\psi$ of prime degree without multiple factors, we prove that the Neron-Severi group of the surface $\phi(x,y)=\psi(z,t)$ is rationally generated by lines.

research product