0000000000676595

AUTHOR

T. Burgsmuller

showing 4 related works from this author

Performance of the DELPHI detector

1996

DELPHI (DEtector with Lepton, Photon and Hadron Identification) is a detector for e(+)e(-) physics, designed to provide high granularity over a 4 pi solid angle, allowing an effective particle identification, It has been operating at the LEP (Large Electron-Positron) collider at CERN since 1989. This article reviews its performance.

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsENERGIESHadronDENSITY PROJECTION CHAMBER; IMAGING CHERENKOV DETECTOR; RADIATIVE-CORRECTIONS; LEP; SIMULATION; ENERGIES; Z(0); SCATTERING; PROGRAM; SYSTEM01 natural sciencesPartícules (Física nuclear)Particle identificationlaw.inventionNuclear physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PROGRAMRADIATIVE-CORRECTIONSSCATTERINGDetectors and Experimental Techniques010306 general physicsColliderInstrumentationDELPHINuclear and High Energy PhysicPhysicsLarge Hadron Colliderhigh granularityCalorimeter (particle physics)LEP; DELPHI; high granularity; particle identification010308 nuclear & particles physicsDetectorHigh Energy Physics::PhenomenologyLEPZ(0)LARGE ELECTRON POSITRON COLLIDERIMAGING CHERENKOV DETECTORFIS/01 - FISICA SPERIMENTALEPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderSIMULATIONPARTICLE PHYSICSPhysics::Accelerator PhysicsFísica nuclearHigh Energy Physics::ExperimentDENSITY PROJECTION CHAMBERparticle identificationSYSTEMLepton
researchProduct

First measurement of f′2 (1525) production in Z0 hadronic decays

1996

The inclusive production of the f(2)'(1525) in hadronic Z(0) decays has been studied in data collected by the DELPHI detector at LEP. The Ring Imaging Cherenkov detectors were important tools in the identification of the decay f(2)'(1525) --> K+K-. The average number of f(2)(')(1525) produced per hadronic Z decay, [f(2)'] = 0.020 +/- 0.005 (stat) +/- 0.006 (syst), and the momentum distribution of the f(2)'(1525) have both been measured. The mass and width of the f(2)'(1525) are found to be [M(f2)'] = 1535 +/- 5 (stat) +/- 4 (syst) MeV/c(2). [Gamma(f2)'] = 60 +/- 20 (stat) +/- 19 (syst) MeV/c(2)

Nuclear and High Energy PhysicsLUND MONTE-CARLOCherenkov detectorElectron–positron annihilationK+KHadron01 natural sciencesPartícules (Física nuclear)JET FRAGMENTATIONPrime (order theory)law.inventionK identificationMomentumNuclear physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment010306 general physicsCherenkov radiationDELPHIPhysicsDELPHI; Cherenkov detector; K identificationE+E-PHYSICS010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyJ-PSILARGE ELECTRON POSITRON COLLIDERSTATESPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentProduction (computer science)Particle Physics - ExperimentCherenkov detectorLUND MONTE-CARLO; JET FRAGMENTATION; E+E-PHYSICS; J-PSI; STATES; K+K
researchProduct

Measurement of trilinear gauge boson couplings WWV, (V Z,gamma) in e(+)e(-) collisions at 189 GeV

2001

Measurements of the trilinear gauge boson couplings WWgamma and WWZ are presented using the data taken by DELPHI in 1998 at a centre-of-mass energy of 189 GeV and combined with DELPHI data at 183 GeV. Values are determined for Delta(g_1^Z) and Delta(kappa_gamma), the differences of the WWZ charge coupling and of the WWgamma dipole coupling from their Standard Model values, and for lambda_gamma, the WWgamma quadrupole coupling. A measurement of the magnetic dipole and electric quadrupole moment of the W is extracted from the results for Delta(kappa_gamma) and lambda_gamma. The study uses data from the final states jjlv, jjjj, lX, jjX and gammaX, where j represents a quark jet, l an identifie…

QuarkNuclear and High Energy PhysicsParticle physicsENERGIESAstrophysics::High Energy Astrophysical Phenomenastandard modelLEP-IIFOS: Physical sciencesLambda7. Clean energy01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentStandard ModelEVENTSHigh Energy Physics - Experiment (hep-ex)BHABHA SCATTERINGMONTE-CARLO0103 physical sciencesOPTIMAL OBSERVABLES[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]W-MASSgauge couplings010306 general physicsDETECTORQCDELPHIPhysicsGauge boson010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCharge (physics)LARGE ELECTRON POSITRON COLLIDERFIS/01 - FISICA SPERIMENTALECol·lisions (Física nuclear)QuadrupolePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIOPTIMAL OBSERVABLES; BHABHA SCATTERING; MONTE-CARLO; W-MASS; LEP-II; EVENTS; DETECTOR; DELPHI; E+E-->W+W; ENERGIESelectron-positron collisionPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentE+E-->W+WMagnetic dipoleLepton
researchProduct

Consistent measurements of alpha(s) from precise oriented event shape distributions

2000

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energ…

QuarkParticle physicsPhysics and Astronomy (miscellaneous)OPTIMIZED PERTURBATION-THEORY; JET CROSS-SECTIONS; E+ E ANNIHILATION; QUANTUM CHROMODYNAMICS; E(+)E(-) ANNIHILATION; QCD CALCULATIONS; Z0 RESONANCE; MONTE-CARLO; DECAYS; ALPHA(S)(M(Z)(2))QCD CALCULATIONSFOS: Physical sciencesScale (descriptive set theory)01 natural sciences7. Clean energyDECAYSPartícules (Física nuclear)High Energy Physics - ExperimentRenormalizationHigh Energy Physics - Experiment (hep-ex)MONTE-CARLO0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Engineering (miscellaneous); Physics and Astronomy (miscellaneous)010306 general physicsEngineering (miscellaneous)ALPHA(S)(M(Z)(2))DELPHIPhysicsQUANTUM CHROMODYNAMICS010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyOrder (ring theory)ObservableFunction (mathematics)E(+)E(-) ANNIHILATIONLARGE ELECTRON POSITRON COLLIDEROrientation (vector space)Experimental uncertainty analysisOPTIMIZED PERTURBATION-THEORYPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSJET CROSS-SECTIONSFísica nuclearHigh Energy Physics::ExperimentE+ E ANNIHILATIONZ0 RESONANCEParticle Physics - Experiment
researchProduct