0000000000676799

AUTHOR

Gianpaolo Torre

Non-Markovianity of Gaussian Channels

We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated to arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.

research product

Non-Markovianity-assisted optimal continuous variable quantum teleportation

We study the continuous-variable (CV) quantum teleportation protocol in the case that one of the two modes of the shared entangled resource is sent to the receiver through a Gaussian Quantum Brownian Motion noisy channel. We show that if the channel is engineered in a non-Markovian regime, the information backflow from the environment induces an extra dependance of the phase of the two-mode squeezing of the shared Gaussian entangled resource on the transit time along the channel of the shared mode sent to the receiver. Optimizing over the non-Markovianity dependent phase of the squeezing yields a significant enhancement of the teleportation fidelity. For short enough channel transit times, …

research product

Quantum coherence of Gaussian states

We introduce a geometric quantification of quantum coherence in single-mode Gaussian states and we investigate the behavior of distance measures as functions of different physical parameters. In the case of squeezed thermal states, we observe that re-quantization yields an effect of noise-enhanced quantum coherence for increasing thermal photon number.

research product

Exact non-Markovian dynamics of Gaussian quantum channels: Finite-time and asymptotic regimes

We investigate the Markovian and non-Markovian dynamics of Gaussian quantum channels, exploiting a recently introduced necessary and sufficient criterion and the ensuing measure of non-Markovianity based on the violation of the divisibility property of the dynamical map. We compare the paradigmatic instances of Quantum Brownian motion (QBM) and Pure Damping (PD) channels, and for the former we find that the exact dynamical evolution is always non-Markovian in the finite-time as well as in the asymptotic regimes, for any nonvanishing value of the non-Markovianity parameter. If one resorts to the rotating wave approximated (RWA) form of the QBM, that neglects the anomalous diffusion contribut…

research product

Asymptotic non-Markovianity

We investigate the asymptotic dynamics of exact quantum Brownian motion. We find that non-Markovianity can persist in the long-time limit, and that in general the asymptotic behaviour depends strongly on the system-environment coupling and the spectral density of the bath.

research product