0000000000676812

AUTHOR

Alexander U. Brandt

showing 2 related works from this author

Cross-recognition of a myelin peptide by CD8+ T cells in the CNS is not sufficient to promote neuronal damage.

2015

Multiple sclerosis (MS) is an inflammatory disease of the CNS thought to be driven by CNS-specific T lymphocytes. Although CD8+T cells are frequently found in multiple sclerosis lesions, their distinct role remains controversial because direct signs of cytotoxicity have not been confirmedin vivo. In the present work, we determined that murine ovalbumin-transgenic (OT-1) CD8+T cells recognize the myelin peptide myelin oligodendrocyte glycoprotein 40–54 (MOG40–54) bothin vitroandin vivo. The aim of this study was to investigate whether such cross-recognizing CD8+T cells are capable of inducing CNS damagein vivo. Using intravital two-photon microscopy in the mouse model of multiple sclerosis, …

CD4-Positive T-LymphocytesCentral Nervous SystemMaleEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisAutoimmunityMice TransgenicCD8-Positive T-Lymphocytesmedicine.disease_causeMyelin oligodendrocyte glycoproteinMyelinMiceIn vivomedicineCytotoxic T cellAnimalsCells CulturedCell ProliferationbiologyCell DeathGeneral NeuroscienceMultiple sclerosisArticlesmedicine.diseaseMolecular mimicrymedicine.anatomical_structureImmunologyNerve Degenerationbiology.proteinFemaleMyelin-Oligodendrocyte GlycoproteinCD8Intravital microscopyThe Journal of neuroscience : the official journal of the Society for Neuroscience
researchProduct

Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator

2010

Chronic inflammation in various organs, such as the brain, implies that different subpopulations of immune cells interact with the cells of the target organ. To monitor this cellular communication both morphologically and functionally, the ability to visualize more than two colors in deep tissue is indispensable. Here, we demonstrate the pronounced power of optical parametric oscillator (OPO)-based two-photon laser scanning microscopy for dynamic intravital imaging in hardly accessible organs of the central nervous and of the immune system, with particular relevance for long-term investigations of pathological mechanisms (e.g., chronic neuroinflammation) necessitating the use of fluorescent…

Materials scienceOptical PhenomenaInfrared RaysInfraredGreen Fluorescent ProteinsSpectroscopy Imaging and Other TechniquesBiophysicsColorCell Linelaw.inventionMiceOpticsTwo-photon excitation microscopylawAluminum OxideAnimalsTitaniumMicroscopyPhotonsPhotobleachingbusiness.industryLasersLaserPhotobleachingFluorescenceMolecular ImagingLuminescent ProteinsBiophysicsOptical parametric oscillatorbusinessExcitationIntravital microscopyBiophysical Journal
researchProduct