0000000000677125

AUTHOR

F Fauci

Preliminary results of the project A.I.D.A. (Auto Immunity: Diagnosis Assisted by computer)

In this paper, are presented the preliminary results of the A.I.D.A. (Auto Immunity: Diagnosis Assisted by computer) project which is developed in the frame of the cross-border cooperation Italy-Tunisia. According to the main objectives of this project, a database of interpreted Indirect ImmunoFluorescence (IIF) images on HEp 2 cells is being collected thanks to the contribution of Italian and Tunisian experts involved in routine diagnosis of autoimmune diseases. Through exchanging images and double reporting; a Gold Standard database, containing around 1000 double reported IIF images with different patterns including negative tests, has been settled. This Gold Standard database has been us…

research product

Distributed medical images analysis on a Grid infrastructure

In this paper medical applications on a Grid infrastructure, the MAGIC-5 Project, are presented and discussed. MAGIC-5 aims at developing Computer Aided Detection (CADe) software for the analysis of medical images on distributed databases by means of GRID Services. The use of automated systems for analyzing medical images improves radiologists’ performance; in addition, it could be of paramount importance in screening programs, due to the huge amount of data to check and the cost of related manpower. The need for acquiring and analyzing data stored in different locations requires the use of Grid Services for the management of distributed computing resources and data. Grid technologies allow…

research product

A completely automated CAD system for mass detection in a large mammographic database.

Mass localization plays a crucial role in computer-aided detection (CAD) systems for the classification of suspicious regions in mammograms. In this article we present a completely automated classification system for the detection of masses in digitized mammographic images. The tool system we discuss consists in three processing levels: (a) Image segmentation for the localization of regions of interest (ROIs). This step relies on an iterative dynamical threshold algorithm able to select iso-intensity closed contours around gray level maxima of the mammogram. (b) ROI characterization by means of textural features computed from the gray tone spatial dependence matrix (GTSDM), containing secon…

research product