0000000000677233

AUTHOR

Jan-philipp Hanke

showing 14 related works from this author

Imprinting and driving electronic orbital magnetism using magnons

2020

Magnons, as the most elementary excitations of magnetic materials, have recently emerged as a prominent tool in electrical and thermal manipulation and transport of spin, and magnonics as a field is considered as one of the pillars of modern spintronics. On the other hand, orbitronics, which exploits the orbital degree of freedom of electrons rather than their spin, emerges as a powerful platform in efficient design of currents and redistribution of angular momentum in structurally complex materials. Here, we uncover a way to bridge the worlds of magnonics and electronic orbital magnetism, which originates in the fundamental coupling of scalar spin chirality, inherent to magnons, to the orb…

QB460-466Condensed Matter - Strongly Correlated ElectronsCondensed Matter::Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter::OtherPhysicsQC1-999FOS: Physical sciencesCondensed Matter::Strongly Correlated Electronsddc:530Astrophysics530
researchProduct

Orbital Nernst Effect of Magnons

2019

In the past, magnons have been shown to mediate thermal transport of spin in various systems. Here, we reveal that the fundamental coupling of scalar spin chirality, inherent to magnons, to the electronic degrees of freedom in the system can result in the generation of sizeable orbital magnetization and thermal transport of orbital angular momentum. We demonstrate the emergence of the latter phenomenon of orbital Nernst effect by referring to the spin-wave Hamiltonian of kagome ferromagnets, predicting that in a wide range of systems the transverse current of orbital angular momentum carried by magnons in response to an applied temperature gradient can overshadow the accompanying spin curre…

Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct

Electric-Field Control of Spin-Orbit Torques in Perpendicularly Magnetized W/CoFeB/MgO Films

2020

Controlling magnetism by electric fields offers a highly attractive perspective for designing future generations of energy-efficient information technologies. Here, we demonstrate that the magnitude of current-induced spin-orbit torques in thin perpendicularly magnetized CoFeB films can be tuned and even increased by electric-field generated piezoelectric strain. Using theoretical calculations, we uncover that the subtle interplay of spin-orbit coupling, crystal symmetry, and orbital polarization is at the core of the observed strain dependence of spin-orbit torques. Our results open a path to integrating two energy efficient spin manipulation approaches, the electric-field-induced strain a…

Materials scienceCondensed matter physicsSpintronicsMagnetismGeneral Physics and AstronomyPolarization (waves)01 natural sciences7. Clean energyPiezoelectricityMagnetizationElectric field0103 physical sciencesPerpendicularTorque010306 general physicsPhysical Review Letters
researchProduct

Mixed topological semimetals driven by orbital complexity in two-dimensional ferromagnets

2018

The concepts of Weyl fermions and topological semimetals emerging in three-dimensional momentum space are extensively explored owing to the vast variety of exotic properties that they give rise to. On the other hand, very little is known about semimetallic states emerging in two-dimensional magnetic materials, which present the foundation for both present and future information technology. Here, we demonstrate that including the magnetization direction into the topological analysis allows for a natural classification of topological semimetallic states that manifest in two-dimensional ferromagnets as a result of the interplay between spin-orbit and exchange interactions. We explore the emerg…

0301 basic medicineElectronic properties and materialsMagnetismScienceFOS: Physical sciencesGeneral Physics and AstronomyPosition and momentum space02 engineering and technologyTopologyArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMagnetizationMagnetic properties and materialsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Topological insulatorslcsh:SciencePhysicsCondensed Matter - Materials ScienceMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsQMaterials Science (cond-mat.mtrl-sci)General ChemistryFermion021001 nanoscience & nanotechnologySemimetal030104 developmental biologyDomain wall (magnetism)FerromagnetismTopological insulatorFerromagnetismlcsh:QCondensed Matter::Strongly Correlated Electronsddc:5000210 nano-technologyNature Communications
researchProduct

Ab initio analysis of magnetic properties of the prototype B20 chiral magnet FeGe

2019

FeGe in the B20 phase is an experimentally well-studied prototypical chiral magnet exhibiting helical spirals, skyrmion lattices and individual skyrmions with a robust length of 70~nm. While the helical spiral ground state can be verified by first-principles calculations based on density functional theory, this feature size could not be reproduced even approximately. To develop a coherent picture of the discrepancy between experiment and theory, we investigate in this work the magnetic properties of FeGe from first-principles using different electronic-structure methods. We study atomistic as well as micromagnetic parameters describing exchange and Dzyaloshinskii-Moriya interactions, and di…

PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSkyrmionAb initioMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPhase (matter)MagnetMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesHelixddc:530010306 general physics0210 nano-technologyGround statePhysical Review B
researchProduct

Mixed topology ring states for Hall effect and orbital magnetism in skyrmions of Weyl semimetals

2020

Skyrmion lattices as a novel type of chiral spin states are attracting increasing attention, owing to their peculiar properties stemming from real-space topological properties. At the same time, the properties of magnetic Weyl semimetals with complex $k$-space topology are moving into the focus of research in spintronics. We consider the Hall transport properties and orbital magnetism of skyrmion lattices imprinted in topological semimetals, by employing a minimal model of a 2D mixed Weyl semimetal which, as a function of the magnetization direction, exhibits two Chern insulator phases separated by a Weyl state for an an in-plane magnetization direction. We find that while the orbital magne…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnetismSkyrmionWeyl semimetalFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyTopologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesMagnetizationMAJORANAFerromagnetismHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ddc:530010306 general physics0210 nano-technologyOrbital magnetizationPhysical Review B
researchProduct

Distinct magnetotransport and orbital fingerprints of chiral bobbers

2019

While chiral magnetic skyrmions have been attracting significant attention in the past years, recently, a new type of a chiral particle emerging in thin films $-$ a chiral bobber $-$ has been theoretically predicted and experimentally observed. Here, based on theoretical arguments, we provide a clear pathway to utilizing chiral bobbers for the purposes of future spintronics by uncovering that these novel chiral states possess inherent transport fingerprints that allow for their unambiguous electrical detection in systems comprising several types of chiral states. We reveal that unique transport and orbital characteristics of bobbers root in the non-trivial magnetization distribution in the …

PhysicsCondensed Matter - Materials ScienceSpintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesTheoretical physicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesParticleddc:530010306 general physics0210 nano-technologySpin (physics)Topology (chemistry)
researchProduct

Giant Anomalous Nernst Effect in Noncollinear Antiferromagnetic Mn-based Antiperovskite Nitrides

2020

The anomalous Nernst effect (ANE) - the generation of a transverse electric voltage by a longitudinal heat current in conducting ferromagnets or antiferromagnets - is an appealing approach for thermoelectric power generation in spin caloritronics. The ANE in antiferromagnets is particularly convenient for the fabrication of highly efficient and densely integrated thermopiles as lateral configurations of thermoelectric modules increase the coverage of heat source without suffering from the stray fields that are intrinsic to ferromagnets. In this work, using first-principles calculations together with a group theory analysis, we systematically investigate the spin order-dependent ANE in nonco…

Condensed Matter - Materials ScienceHeat currentMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesFermi energy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakeAntiperovskiteFerromagnetism0103 physical sciencessymbolsAntiferromagnetismGeneral Materials Scienceddc:530Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyOrder of magnitudeNernst effectSpin-½
researchProduct

Engineering the dynamics of topological spin textures by anisotropic spin-orbit torques

2020

Integrating topologically stabilized magnetic textures such as skyrmions as nanoscale information carriers into future technologies requires the reliable control by electric currents. Here, we uncover that the relevant skyrmion Hall effect, which describes the deflection of moving skyrmions from the current flow direction, acquires important corrections owing to anisotropic spin-orbit torques that alter the dynamics of topological spin structures. Thereby, we propose a viable means for manipulating the current-induced motion of skyrmions and antiskyrmions. Based on these insights, we demonstrate by first-principles calculations and symmetry arguments that the motion of spin textures can be …

PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physics530 PhysicsSkyrmionMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyTopology530 Physik01 natural sciencesSymmetry (physics)Deflection (physics)Hall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Orbit (dynamics)ddc:530Electric current010306 general physics0210 nano-technologyAnisotropySpin-½
researchProduct

Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn3XN with X=Ga , Zn, Ag, or Ni

2019

The anomalous Hall effect (AHE) and the magneto-optical effect (MOE) are two prominent manifestations of time-reversal symmetry breaking in magnetic materials. Noncollinear antiferromagnets (AFMs) have recently attracted a lot of attention owing to the potential emergence of exotic spin orders on geometrically frustrated lattices, which can be characterized by corresponding spin chiralities. By performing first-principles density functional calculations together with group-theory analysis and tight-binding modeling, here we systematically study the spin-order dependent AHE and MOE in representative noncollinear AFMs ${\mathrm{Mn}}_{3}X\mathrm{N}\phantom{\rule{4pt}{0ex}}(X=\mathrm{Ga}$, Zn, …

PhysicsMagnetic anisotropySpintronicsCondensed matter physicsAntiferromagnetismOrder (ring theory)Point groupOmegaEnergy (signal processing)Spin-½Physical Review B
researchProduct

Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets

2018

Reflecting the fundamental interactions of polarized light with magnetic matter, magneto-optical effects are well known since more than a century. The emergence of these phenomena is commonly attributed to the interplay between exchange splitting and spin-orbit coupling in the electronic structure of magnets. Using theoretical arguments, we demonstrate that topological magneto-optical effects can arise in noncoplanar antiferromagnets due to the finite scalar spin chirality, without any reference to exchange splitting or spin-orbit coupling. We propose spectral integrals of certain magneto-optical quantities that uncover the unique topological nature of the discovered effect. We also find th…

ScienceFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyElectronic structureTopology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticleMagneto opticalsymbols.namesakeQuantization (physics)Magnetic properties and materials0103 physical sciencesFaraday effectTopological insulators010306 general physicslcsh:ScienceQuantumPhysicsCondensed Matter - Materials ScienceMultidisciplinaryQMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyFundamental interactionMagnetsymbolsCondensed Matter::Strongly Correlated Electronslcsh:Qddc:500Astrophysics::Earth and Planetary AstrophysicsMagneto-optics0210 nano-technology
researchProduct

Theory of Current-Induced Angular Momentum Transfer Dynamics in Spin-Orbit Coupled Systems.

2020

Motivated by the importance of understanding competing mechanisms to current-induced spin-orbit torque in complex magnets, we develop a unified theory of current-induced spin-orbital coupled dynamics. The theory describes angular momentum transfer between different degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom. We then propose a classification scheme for the mechanisms of the c…

PhysicsCondensed Matter - Materials ScienceAngular momentumCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsEquations of motionMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesArticleMagnetizationFerromagnetismHall effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin Hall effectTorqueddc:530Density functional theoryAstrophysics::Earth and Planetary AstrophysicsPhysical review research
researchProduct

Spin-order dependent anomalous Hall effect and magneto-optical effect in noncollinear antiferromagnets Mn$_{3}X$N ($X$ = Ga, Zn, Ag, and Ni)

2019

Noncollinear antiferromagnets (AFMs) have recently attracted a lot of attention owing to the potential emergence of exotic spin orders on geometrically frustrated lattices, which can be characterized by corresponding spin chiralities. By performing first-principles density functional calculations together with group-theory analysis and tight-binding modelling, here we systematically study the spin-order dependent anomalous Hall effect (AHE) and magneto-optical effect (MOE) in representative noncollinear AFMs Mn$_{3}X$N ($X$ = Ga, Zn, Ag, and Ni). The symmetry-related tensor shape of the intrinsic anomalous Hall conductivity (IAHC) for different spin orders is determined by analyzing the rel…

Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct

Topological-chiral magnetic interactions driven by emergent orbital magnetism

2019

Two hundred years ago, Andr\'e-Marie Amp\`ere discovered that electric loops in which currents of electrons are generated by a penetrating magnetic field can interact with each other. Here we show that Amp\`ere's observation can be transferred to the quantum realm of interactions between triangular plaquettes of spins on a lattice, where the electrical currents at the atomic scale are associated with a peculiar type of the orbital motion of electrons in response to the non-coplanarity of neighbouring spins playing the role of a magnetic field. The resulting topological orbital moment underlies the relation of the orbital dynamics with the topology of the spin structure. We demonstrate that …

Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct