0000000000677646
AUTHOR
Paulina Hołuj
Thermal conductance of thin film YIG determined using Bayesian statistics
Thin film YIG (${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$) is a prototypical material for experiments on thermally generated pure spin currents and the spin Seebeck effect. The $3\ensuremath{\omega}$ method is an established technique to measure the cross-plane thermal conductance of thin films, but cannot be used in YIG/GGG (${\mathrm{Ga}}_{3}{\mathrm{Gd}}_{5}{\mathrm{O}}_{12}$) systems in its standard form. We use two-dimensional modeling of heat transport and introduce a technique based on Bayesian statistics to evaluate measurement data taken from the $3\ensuremath{\omega}$ method. Our analysis method allows us to study material systems that have not been accessible with the c…
Magnetic field dependent thermal conductance in La0.67Ca0.33MnO3
Abstract Using the differential 3 ω technique we measured the low-temperature out-of-plane thermal conductance of heteroepitaxial thin film La0.67Ca0.33MnO3 (LCMO). The magnetic field dependence of the thermal conductance reached values of up to 23%. The effect was observed to be largest in the vicinity of the metal–insulator transition, since the enhancement in thermal conductance is triggered by the colossal magnetoresistance effect increasing the electronic contribution to the thermal conductance. The point of the maximal change was adjusted by post-annealing the samples in an oxygen atmosphere. Samples with a higher transition temperature and lower epitaxial strain displayed a lower mag…
Thermal conductivity of half-Heusler superlattices
Thin films and superlattices (SLs) of TiNiSn and ZrHfNiSn layers have been grown by dc magnetron sputtering on MgO (100) substrates to reduce the thermal conductivity, aiming for improvement of the thermoelectric figure of merit ZT. The thermal conductivity of 1 Wm−1K−1 was measured by the differential 3ω method for an SL with a periodicity of 8.8 nm. In addition to x-ray diffraction analysis of the SL crystal structure, smooth interfaces were confirmed by scanning/transmission electron microscopy.
Reduced thermal conductivity of TiNiSn/HfNiSn superlattices
Diminution of the thermal conductivity is a crucial aspect in thermoelectric research. We report a systematic and significant reduction of the cross-plane thermal conductivity in a model system consisting of DC sputtered TiNiSn and HfNiSn half-Heusler superlattices. The reduction of $\kappa$ is measured by the 3$\omega$ method and originates from phonon scattering at the internal interfaces. Heat transport in the superlattices is calculated based on Boltzmann transport theory, including a diffusive mismatch model for the phonons at the internal interfaces. Down to superlattice periodicity of 3 nm the phonon spectrum mismatch between the superlattice components quantitatively explains the re…