0000000000677755

AUTHOR

Alejandro Díaz-morcillo

0000-0003-3905-3057

showing 4 related works from this author

Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration

2022

This article belongs to the Special Issue Studying the Universe from Spain.

Dark matter detectorsResonant cavitiesaxionsdark matter detectorsPhysics - Instrumentation and Detectorshep-exAxionsGeneral Physics and AstronomyFOS: Physical sciencesElementary particle physicsInstrumentation and Detectors (physics.ins-det)QC793-793.5HaloscopesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)haloscopesDetectors and Experimental Techniquesphysics.ins-detParticle Physics - Experimentresonant cavities
researchProduct

Scalable haloscopes for axion dark matter detection in the 30$\mu$eV range with RADES

2020

RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the perf…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsDark matter7. Clean energy01 natural sciencesHigh Energy Physics - Experiment0103 physical sciencesDark Matter and Double Beta Decay (experiments)Dark matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsAxionParticle Physics - PhenomenologyCouplingPhysicsTeoría de la Señal y las ComunicacionesLarge Hadron Colliderhep-ex010308 nuclear & particles physicsDetectorhep-phDipoleHigh Energy Physics - PhenomenologyMagnetlcsh:QC770-79821 Astronomía y AstrofísicaMagnetic dipoleParticle Physics - Experiment
researchProduct

The 3 Cavity Prototypes of RADES: An Axion Detector Using Microwave Filters at CAST

2019

The Relic Axion Detector Experimental Setup (RADES) is an axion search project that uses a microwave filter as resonator for Dark Matter conversion. The main focus of this publication is the description of the 3 different cavity prototypes of RADES. The result of the first tests of one of the prototypes is also presented. The filters consist of 5 or 6 stainless steel sub-cavities joined by rectangular irises. The size of the sub-cavities determines the working frequency, the amount of sub-cavities determine the working volume. The first cavity prototype was built in 2017 to work at a frequency of $\sim$ 8.4 GHz and it was placed at the 9 T CAST dipole magnet at CERN. Two more prototypes wer…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ResonatorOpticsDipole magnet0103 physical sciencesSensitivity (control systems)Detectors and Experimental Techniques010306 general physicsAxionphysics.ins-detPhysicsLarge Hadron Collider010308 nuclear & particles physicsbusiness.industryhep-exDetectorInstrumentation and Detectors (physics.ins-det)Filter (signal processing)Physics::Accelerator PhysicsbusinessMicrowaveParticle Physics - Experiment
researchProduct

Axion Searches with Microwave Filters: the RADES project

2018

We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10–100 μeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the de…

Dark matterFOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)OpticsDipole magnet0103 physical sciencesSensitivity (control systems)010306 general physicsAxionParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsLarge Hadron Colliderhep-ex010308 nuclear & particles physicsbusiness.industryDetectorhep-phAstronomy and AstrophysicsHigh Energy Physics - PhenomenologybusinessParticle Physics - ExperimentMicrowave
researchProduct