6533b831fe1ef96bd1299b17
RESEARCH PRODUCT
Scalable haloscopes for axion dark matter detection in the 30$\mu$eV range with RADES
Javier RedondoBabette DöbrichJ. GolmJ. GolmJuan Daniel GallegoS. Arguedas CuendisAlejandro Díaz-morcilloI. G. IrastorzaWalter WuenschAlejandro ÁLvarez MelcónC. Peña GarayJ.m. García BarcelóP. NavarroA. MillarA. MillarC. CogollosBenito GimenoA. J. Lozano-guerreroChloé Malbrunotsubject
Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsDark matter7. Clean energy01 natural sciencesHigh Energy Physics - Experiment0103 physical sciencesDark Matter and Double Beta Decay (experiments)Dark matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsAxionParticle Physics - PhenomenologyCouplingPhysicsTeoría de la Señal y las ComunicacionesLarge Hadron Colliderhep-ex010308 nuclear & particles physicsDetectorhep-phDipoleHigh Energy Physics - PhenomenologyMagnetlcsh:QC770-79821 Astronomía y AstrofísicaMagnetic dipoleParticle Physics - Experimentdescription
RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the performance of the chosen design. We also point towards the applicability of this formalism to optimise the MADMAX dielectric haloscopes.
year | journal | country | edition | language |
---|---|---|---|---|
2020-02-18 |