0000000000140013

AUTHOR

Alejandro ÁLvarez Melcón

showing 10 related works from this author

Efficient formulation of Multimode Equivalent Networks for 2-D waveguide steps through Kummer's transformation

2017

In this paper we present a new and improved formulation for the Multimode Equivalent Network (MEN) representation of arbitrary waveguide junctions. In the new formulation the Kummer's transformation is used to separate the kernel into dynamic and static parts, by introducing higher order extraction terms. The main difference with respect to the old formulation is that the approximation of the kernel is more accurate and the numerical computations are more efficient. In addition to theory, both formulations are compared in terms of efficiency and convergence thereby fully validating the proposed new formulation.

Multi-mode optical fiberComputationMathematical analysis020206 networking & telecommunications02 engineering and technologysymbols.namesakeTransformation (function)Kernel (statistics)Convergence (routing)0202 electrical engineering electronic engineering information engineeringTaylor seriessymbolsApplied mathematicsWaveguide (acoustics)Representation (mathematics)Mathematics2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)
researchProduct

Evaluation of time domain electromagnetic fields radiated by constant velocity moving particles traveling along an arbitrarily shaped cross-section w…

2012

[1] A technique for the accurate computation of the time domain electromagnetic fields radiated by a charged distribution traveling along an arbitrarily shaped waveguide region is presented. Based on the transformation (by means of the standard Fourier analysis) of the time-varying current density of the analyzed problem to the frequency domain, the resulting equivalent current is further convolved with the dyadic electric and magnetic Green’s functions. Moreover, we show that only the evaluation of the transverse magnetic modes of the structure is required for the calculation of fields radiated by particles traveling in the axial direction. Finally, frequency domain electric and magnetic f…

Electromagnetic fieldPhysicsField (physics)business.industryMathematical analysisCondensed Matter PhysicsCharged particlelaw.inventionMagnetic fieldsymbols.namesakeOpticslawFrequency domainGreen's functionsymbolsGeneral Earth and Planetary SciencesTime domainElectrical and Electronic EngineeringbusinessWaveguideRadio Science
researchProduct

Comparison between the Kummer's transformation and Ewald method for the evaluation of the parallel plate Green's functions

2006

In this paper, we present a convergence and efficiency study of two different acceleration techniques for the evaluation of the parallel plate Green's functions. The first technique is based on the extraction of the asymptotic terms of the spectral representation of the parallel plate Green's functions by applying the Kummer's transformation. The second technique is a straightforward reformulation of the 2-D Green's functions for 1-D periodic structures to the parallel plate case. The PPW Green's functions calculated by the two methods have been successfully applied to the analysis of a practical inductive microwave filter containing metallic and dielectric posts. The filter analysis techni…

chemistry.chemical_compoundAccelerationTransformation (function)chemistryMathematical analysisConvergence (routing)Function (mathematics)Method of moments (statistics)Integral equationParallel plateGreen SMathematics2006 IEEE Antennas and Propagation Society International Symposium
researchProduct

Investigation of Multipaction Phenomena in Passive Waveguide Filters for Space Applications

2006

This paper presents an investigation on multipaction risk in microwave bandpass filters. The study reveals higher multipaction risk for narrower bandpass filters. To alleviate the problem with multi-paction generation, different novel filtering structures are proposed. Results demonstrate that using the new structures multipaction risk can be reduced as much as 30% with regard to the initial design.

Waveguide filterBand-pass filterComputer scienceElectronic engineeringPrototype filterSpace (mathematics)Microwave2006 IEEE MTT-S International Microwave Symposium Digest
researchProduct

Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration

2022

This article belongs to the Special Issue Studying the Universe from Spain.

Dark matter detectorsResonant cavitiesaxionsdark matter detectorsPhysics - Instrumentation and Detectorshep-exAxionsGeneral Physics and AstronomyFOS: Physical sciencesElementary particle physicsInstrumentation and Detectors (physics.ins-det)QC793-793.5HaloscopesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)haloscopesDetectors and Experimental Techniquesphysics.ins-detParticle Physics - Experimentresonant cavities
researchProduct

Scalable haloscopes for axion dark matter detection in the 30$\mu$eV range with RADES

2020

RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the perf…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsDark matter7. Clean energy01 natural sciencesHigh Energy Physics - Experiment0103 physical sciencesDark Matter and Double Beta Decay (experiments)Dark matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsAxionParticle Physics - PhenomenologyCouplingPhysicsTeoría de la Señal y las ComunicacionesLarge Hadron Colliderhep-ex010308 nuclear & particles physicsDetectorhep-phDipoleHigh Energy Physics - PhenomenologyMagnetlcsh:QC770-79821 Astronomía y AstrofísicaMagnetic dipoleParticle Physics - Experiment
researchProduct

The 3 Cavity Prototypes of RADES: An Axion Detector Using Microwave Filters at CAST

2019

The Relic Axion Detector Experimental Setup (RADES) is an axion search project that uses a microwave filter as resonator for Dark Matter conversion. The main focus of this publication is the description of the 3 different cavity prototypes of RADES. The result of the first tests of one of the prototypes is also presented. The filters consist of 5 or 6 stainless steel sub-cavities joined by rectangular irises. The size of the sub-cavities determines the working frequency, the amount of sub-cavities determine the working volume. The first cavity prototype was built in 2017 to work at a frequency of $\sim$ 8.4 GHz and it was placed at the 9 T CAST dipole magnet at CERN. Two more prototypes wer…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ResonatorOpticsDipole magnet0103 physical sciencesSensitivity (control systems)Detectors and Experimental Techniques010306 general physicsAxionphysics.ins-detPhysicsLarge Hadron Collider010308 nuclear & particles physicsbusiness.industryhep-exDetectorInstrumentation and Detectors (physics.ins-det)Filter (signal processing)Physics::Accelerator PhysicsbusinessMicrowaveParticle Physics - Experiment
researchProduct

Rigorous Multimode Equivalent Network Representation of Multilayer Planar Circuits

2018

The objective of this paper is to extend the use of the Multimode Equivalent Network formulation, originally developed to analyze waveguide junctions, to the analysis of planar circuits that include arbitrary rectangular printed, zero thickness metallizations together with internal and external ports in the transverse plane. The theoretical derivations lead to an accurate and computationally efficient tool for the analysis of boxed, multilayer microwave printed circuits. In addition to theory, the tool developed is used here to analyze two practical examples: a dual-bandpass and a 4-pole bandpass boxed microstrip filters. Good agreement with respect to commercial software tools and measurem…

Commercial softwareMulti-mode optical fiberComputer science020206 networking & telecommunications02 engineering and technologyPlanar circuitsTopologyWaveguide (optics)MicrostripPrinted circuit boardPlanarBand-pass filterTeoría de la Señal y ComunicacionesMultimode Equivalent Network (MEN)Hardware_INTEGRATEDCIRCUITS0202 electrical engineering electronic engineering information engineeringElectromagnetismoElectronic circuit2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)
researchProduct

Axion Searches with Microwave Filters: the RADES project

2018

We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10–100 μeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the de…

Dark matterFOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)OpticsDipole magnet0103 physical sciencesSensitivity (control systems)010306 general physicsAxionParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsLarge Hadron Colliderhep-ex010308 nuclear & particles physicsbusiness.industryDetectorhep-phAstronomy and AstrophysicsHigh Energy Physics - PhenomenologybusinessParticle Physics - ExperimentMicrowave
researchProduct

Efficient Analysis of Arbitrarily Shaped Inductive Obstacles in Rectangular Waveguides Using a Surface Integral Equation Formulation

2007

In this paper we propose to use the Surface Integral Equation technique for the analysis of arbitrarily shaped Hplane obstacles in rectangular waveguides, which can contain both metallic and/or dielectric objects. The Green functions are formulated using both spectral and spatial images series, whose convergence behavior has been improved through several acceleration techniques. Proceeding in this way, the convergence of the series is not attached to the employment of any particular basis or test function, thus consequently increasing the flexibility of the implemented technique. In order to test the accuracy and numerical efficiency of the proposed method, results for practical microwave c…

Surface (mathematics)Componentes de guía de ondasWaveguide componentsAccelerationResonadores dieléctricosConvergence (routing)Electronic engineeringGreen's functionsMoment methodsElectrical and Electronic EngineeringIntegral equationsDiscontinuidades de ondas guíaMathematicsTeoría de la Señal y las ComunicacionesRadiationSeries (mathematics)Basis (linear algebra)Methods currentlyNumerical analysisMathematical analysisMétodos de momentosCondensed Matter PhysicsIntegral equationWaveguide discontinuitiesDielectric resonatorsEcuaciones integralesTest functions for optimizationFunciones GreenIntegral equation (IE)3325 Tecnología de las Telecomunicaciones
researchProduct