0000000000200893
AUTHOR
Babette Döbrich
Axion search with BabyIAXO in view of IAXO
Axions are a natural consequence of the Peccei-Quinn mechanism, the most compelling solution to the strong-CP problem. Similar axion-like particles (ALPs) also appear in a number of possible extensions of the Standard Model, notably in string theories. Both axions and ALPs are very well motivated candidates for Dark Matter, and in addition, they would be copiously produced at the sun's core. A relevant effort during the last decade has been the CAST experiment at CERN, the most sensitive axion helioscope to-date. The International Axion Observatory (IAXO) is a large-scale 4th generation helioscope. As its primary physics goal, IAXO will look for solar axions or ALPs with a signal to backgro…
Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these longlived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP…
Searches for lepton number violating $K^+$ decays
The NA62 experiment at CERN reports a search for the lepton number violating decays K+ -> pi(-)e(+)e(+) and K+ -> pi(-)mu(+)mu(+) using a data sample collected in 2017. No signals are observed, and upper limits on the branching fractions of these decays of 2.2 x 10(-10) and 4.2 x 10(-11) are obtained, respectively, at 90% confidence level. These upper limits improve on previously reported measurements by factors of 3 and 2, respectively.
Search for heavy neutral lepton production in K+ decays to positrons
A search for heavy neutral lepton ($N$) production in $K^+\to e^+N$ decays using the data sample collected by the NA62 experiment at CERN in 2017--2018 is reported. Upper limits of the extended neutrino mixing matrix element $|U_{e4}|^2$ are established at the level of $10^{-9}$ over most of the accessible heavy neutral lepton mass range 144--462 MeV/$c^2$, with the assumption that the lifetime exceeds 50 ns. These limits improve significantly upon those of previous production and decay searches. The $|U_{e4}|^2$ range favoured by Big Bang Nucleosynthesis is excluded up to a mass of about 340 MeV/$c^2$.
Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration
This article belongs to the Special Issue Studying the Universe from Spain.
NA48/62 latest results
The NA62 experiment at the CERN SPS recorded in 2007 a large sample of K+ ? µ+?µ decays. A peak search in the missing mass spectrum of this decay is performed. In the absence of observed signal, the limits obtained on B(K+ ? µ+?h) and on the mixing matrix element |Uµ 4| are reported. The upgraded NA62 experiment started data taking in 2015. About 5×1011K+ decays have been recorded so far to measure the branching ratio of the K+ ? ?+?? decay. Preliminary results from the K+ ? ?+?? analysis based on about 5% of the 2016 statistics are reported.
Scalable haloscopes for axion dark matter detection in the 30$\mu$eV range with RADES
RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the perf…
The 3 Cavity Prototypes of RADES: An Axion Detector Using Microwave Filters at CAST
The Relic Axion Detector Experimental Setup (RADES) is an axion search project that uses a microwave filter as resonator for Dark Matter conversion. The main focus of this publication is the description of the 3 different cavity prototypes of RADES. The result of the first tests of one of the prototypes is also presented. The filters consist of 5 or 6 stainless steel sub-cavities joined by rectangular irises. The size of the sub-cavities determines the working frequency, the amount of sub-cavities determine the working volume. The first cavity prototype was built in 2017 to work at a frequency of $\sim$ 8.4 GHz and it was placed at the 9 T CAST dipole magnet at CERN. Two more prototypes wer…
Search for heavy neutral lepton production in K+ decays
A search for heavy neutral lepton production in $K^+$ decays using a data sample collected with a minimum bias trigger by the NA62 experiment at CERN in 2015 is reported. Upper limits at the $10^{-7}$ to $10^{-6}$ level are established on the elements of the extended neutrino mixing matrix $|U_{\ell 4}|^2$ ($\ell=e,\mu$) for heavy neutral lepton mass in the range $170-448~{\rm MeV}/c^2$. This improves on the results from previous production searches in $K^+$ decays, setting more stringent limits and extending the mass range.
Axion Searches with Microwave Filters: the RADES project
We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10–100 μeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the de…
Search for Lepton Number and Flavor Violation in K+ and π0 Decays
Searches for the lepton number violating $K^{+} \rightarrow \pi^{-} \mu^{+} e^{+}$ decay and the lepton flavour violating $K^{+} \rightarrow \pi^{+} \mu^{-} e^{+}$ and $\pi^{0} \rightarrow \mu^{-} e^{+}$ decays are reported using data collected by the NA62 experiment at CERN in $2017$-$2018$. No evidence for these decays is found and upper limits of the branching ratios are obtained at 90% confidence level: $\mathcal{B}(K^{+}\rightarrow\pi^{-}\mu^{+}e^{+})<4.2\times 10^{-11}$, $\mathcal{B}(K^{+}\rightarrow\pi^{+}\mu^{-}e^{+})<6.6\times10^{-11}$ and $\mathcal{B}(\pi^{0}\rightarrow\mu^{-}e^{+})<3.2\times 10^{-10}$. These results improve by one order of magnitude over previous results for thes…