0000000000677794

AUTHOR

Jacob Gayles

Room-temperature spin-orbit torque in NiMnSb

Materials that crystalize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, the two atomic sites in the unit cell of these crystals form inversion partners which gives rise to relativistic non-equilibrium spin phenomena highly relevant for magnetic memories and other spintronic devices. When the inversion-partner sites are occupied by the same atomic species, electrical current can generate local spin polarization with the same magnitude and opposite sign on the two inversion-partner sites. In CuMnAs, which shares this specific crystal symmetry of the Si lattice, the effect led to the demonstration of electric…

research product

Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV 3 Sb 5

The anomalous Hall effect soars when Dirac quasiparticles meet frustrated magnetism.

research product

Dzyaloshinskii-Moriya Interaction and Hall Effects in the Skyrmion Phase ofMn1−xFexGe

We carry out density functional theory calculations which demonstrate that the electron dynamics in the Skyrmion phase of Fe-rich Mn_{1-x}Fe_{x}Ge alloys is governed by Berry phase physics. We observe that the magnitude of the Dzyaloshinskii-Moriya interaction directly related to the mixed space-momentum Berry phases, changes sign and magnitude with concentration x in direct correlation with the data of Shibata et al. [Nat. Nanotechnol. 8, 723 (2013)]. The computed anomalous and topological Hall effects in FeGe are also in good agreement with available experiments. We further develop a simple tight-binding model able to explain these findings. Finally, we show that the adiabatic Berry phase…

research product

Helical magnetic structure and the anomalous and topological Hall effects in epitaxial B20 Fe$_{1-y}$Co$_y$Ge films

Epitaxial films of the B20-structure compound Fe1−yCoyGe were grown by molecular beam epitaxy on Si (111) substrates. The magnetization varied smoothly from the bulklike values of one Bohr magneton per Fe atom for FeGe to zero for nonmagnetic CoGe. The chiral lattice structure leads to a Dzyaloshinskii-Moriya interaction (DMI), and the films' helical magnetic ground state was confirmed using polarized neutron reflectometry measurements. The pitch of the spin helix, measured by this method, varies with Co content y and diverges at y∼0.45. This indicates a zero crossing of the DMI, which we reproduced in calculations using first-principles methods. We also measured the longitudinal and Hall r…

research product