0000000000680393

AUTHOR

R. Silvestri

showing 10 related works from this author

Proton-hole states in theN=30neutron-rich isotopeK49

2010

Excited states in the N=30 neutron-rich isotope {sup 49}K have been studied using multinucleon transfer reactions with thin targets and the PRISMA-CLARA spectrometer combined with thick-target {gamma}-coincidence data from Gammasphere. The d{sub 3/2} proton-hole state is located 92 keV above the s{sub 1/2} ground state, and the proton-particle f{sub 7/2} state is suggested at 2104 keV. Three other levels are established as involving the coupling to 2{sup +} of two neutrons above the N=28 shell. The measured or estimated lifetimes served to reinforce the interpretation of the observed level structure, which is found to be in satisfactory agreement with shell-model calculations.

Nuclear reactionPhysicsNuclear and High Energy PhysicsProtonAstrophysics::High Energy Astrophysical PhenomenaExcited stateGammasphereNeutronAtomic physicsNuclear ExperimentGround stateNucleonCoupling (probability)Physical Review C
researchProduct

Structure of the As, Ge, Ga nuclei

2012

Abstract The level structures of the N = 50 83As, 82Ge, and 81Ga isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA–PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the γ-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N = 50 shell closure in the region of 78Ni ( Z = 28 ). The comparison of the experimental level schemes with the shell-model calculations yields an N = 50 energy gap value of 4.7(3) MeV at Z = 28 . This value, in a good agreement with the prediction of the fini…

PhysicsNuclear reactionNuclear and High Energy Physics010308 nuclear & particles physicsBand gapNuclear TheorySHELL modelShell (structure)Structure (category theory)01 natural sciencesStability (probability)Coincidence0103 physical sciencesOrder (group theory)Atomic physics010306 general physicsNuclear Physics A
researchProduct

Investigation of the reaction 64Ni+238U being an option of synthesizing element 120

2010

This study is concerned with the search for entrance channels suitable to synthesize elements with Z > 118. Mass-energy distributions as well as capture cross-sections of fission-like fragments have been measured for the reactions 64Ni + 238U → 302120 and 48Ca + 238U → 286112 at energies near the Coulomb barrier. Compound nucleus fission cross-sections were estimated from the analysis of mass and total kinetic energy distributions. The cross-section drops three orders of magnitude for the formation of the compound nucleus with Z = 120 obtained in the reaction 64Ni + 238U compared to the formation of the compound nucleus with Z = 112 obtained in the reaction 48Ca + 238U at an excitation ener…

Physicssuperheavy elements ; fusion ; fission ; entrance channelsNuclear and High Energy PhysicsQuasi-fissionFissionSuperheavy elementsFusion–fissionCoulomb barrierKinetic energyPhysique atomique et nucléairemedicine.anatomical_structureSuperheavy elementOrders of magnitude (time)medicineAtomic physicsNucleusFusion-fissionExcitationPhysics Letters B
researchProduct

Probing the nature of particle–core couplings in 49Ca with γ spectroscopy and heavy-ion transfer reactions

2011

Neutron rich nuclei around 48Ca have been measured with the CLARA–PRISMA setup, making use of 48Ca on 64Ni binary reactions, at 5.9 MeV/A. Angular distributions of γ rays give evidence, in several transfer channels, for a large spin alignment (≈70%) perpendicular to the reaction plane, making it possible to firmly establish spin and parities of the excited states. In the case of 49Ca, states arising from different types of particle–core couplings are, for the first time, unambiguously identified on basis of angular distribution, polarization and lifetime measurements. Shell model and particle–vibration coupling calculations are used to pin down the nature of the states. Evidence is found fo…

CouplingPhysicsNuclear and High Energy PhysicsPhononMagnetic spectrometerPolarization (waves)Multi-nucleon transferGamma spectroscopyExcited stateNeutronGamma spectroscopyParticle–core couplingMulti-nucleon transfer ; Gamma spectroscopy ; Magnetic spectrometer ; Particle–core couplingAtomic physicsSpectroscopyExcitationPhysics Letters B
researchProduct

Lifetime Measurements of the Neutron-RichN=30IsotonesCa50andSc51: Orbital Dependence of Effective Charges in thefpShell

2009

The lifetimes of the first excited states of the N=30 isotones Ca-50 and Sc-51 have been determined using the Recoil Distance Doppler Shift method in combination with the CLARA-PRISMA spectrometers. This is the first time such a method is applied to measure lifetimes of neutron-rich nuclei populated via a multinucleon transfer reaction. This extends the lifetime knowledge beyond the f(7/2) shell closure and allows us to derive the effective proton and neutron charges in the fp shell near the doubly magic nucleus Ca-48, using large-scale, shell-model calculations. These results indicate an orbital dependence of the core polarization along the fp shell.

Nuclear reactionPhysicsRecoilProtonExcited stateNuclear TheoryHadronGeneral Physics and AstronomyNeutronAtomic physicsNuclear ExperimentNucleonEffective nuclear chargePhysical Review Letters
researchProduct

Reaction dynamics and nuclear structure studies via deep inelastic collisions with heavy-ions: spin and parity assignment in49Ca

2011

The population and gamma decay of neutron rich nuclei around 48Ca has been measured at Legnaro National Laboratory with the PRISMA-CLARA setup, using deep-inelastic collisions (DIC) on 64Ni, at an energy approximately twice the Coulomb barrier. The reaction properties of the main products are investigated, focusing on total cross sections and angular distributions both integrated in energy and associated to the population of specific excited states. Gamma spectroscopy studies are also performed, giving evidence, for the first time in transfer reactions with heavy ions, of a large spin alignment (~70%), perpendicular to the reaction plane. This makes possible the use of angular distributions…

PhysicsHistoryeducation.field_of_studyPopulationInelastic collisionGamma rayCoulomb barrierComputer Science ApplicationsEducationReaction dynamicsExcited stateNeutronAtomic physicsNuclear ExperimentNucleoneducation
researchProduct

High-spin states in the neutron-rich A∼100 region

2009

Two experimental setups have been used to study excited states of neutron‐rich nuclei in the A∼100 region. Extended level schemes and lifetime measurements were obtained using deep‐inelastic and fusion‐fission reactions with the CLARA‐PRISMA spectrometer and the Ge‐array GASP respectively. Experimental information from GASP has been used to complement the CLARA‐PRISMA experiment. Time spectra have been used to measure the lifetimes of isomeric states. Preliminary results are presented for 89Rb.

Physicsγ-ray transitionsSpin statesSpectrometerAstrophysics::High Energy Astrophysical PhenomenaLifetimesPRISMA-CLARA spectrometerGASP arrayDeep inelastic scatteringSpectral lineNuclear physicsPhysics and Astronomy (all)Excited stateNuclear fusionNeutronGamma spectroscopyAtomic physicsγ-ray transitions; GASP array; Lifetimes; PRISMA-CLARA spectrometer; Physics and Astronomy (all)Nuclear ExperimentAIP Conference Proceedings
researchProduct

Population of neutron-rich nuclei around 48ca with deep inelastic collisions

2009

The deep inelastic reaction 48Ca+64Ni at 6 MeV/A has been studied using the CLARA–PRISMA setup. Angular distributions for pure elastic scattering and total cross-sections of the most relevant transfer channels have been measured. The experimental results are compared with predictions from a semiclassical model, showing good agreement for the presently analyzed few neutrons transfer channels. The decay of the most intense reaction products has also been studied, giving indications of the population of states with very short lifetimes. Gadea Raga, Andrés, Gadea.Andres@ific.uv.es

Neutron-rich nucleiReacción InelásticaUNESCO::FÍSICAUNESCO::FÍSICA::Nucleónica::Física de partículasInelastic collision Neutron-rich nuclei Reaction products Semiclassical model Transfer channel; Angular distribution; CalciumReaction productsCanales de transmisiónSemiclassical modelCLARA–PRISMAReacción Inelástica ; CLARA–PRISMA ; Distribuciones angulares ; Secciones cruzadas ; Modelo semiclásico ; Canales de transmisión ; Muy corta vidaInelastic collisionDistribuciones angularesdeep inelastic reaction; semiclassical model; closed shell nuceli:FÍSICA [UNESCO]:FÍSICA::Nucleónica::Física de partículas [UNESCO]Muy corta vidaTransfer channelSecciones cruzadasCalciumAngular distributionModelo semiclásico
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct

Spectroscopic studies with the PRISMA-CLARA set-up

2010

The large solid angle magnetic spectrometer for heavy ions PRISMA, installed at Laboratori Nazionali di Legnaro (LNL), was operated up to the end of March 2008 in conjunction with the highly efficient CLARA set-up. It allowed to carry out nuclear structure and reaction mechanism studies in several mass regions of the nuclide chart. Results obtained in the vicinity of the island of inversion and for the heavy iron and chromium isotopes are presented in this contribution. The status of the new focal plane detectors specifically designed for light ions and slow moving heavy ions is also reported.

Nuclear physicsHistorySpectrometerChemistryIsland of inversionNuclear structureSolid angleElastic and quasielastic scattering ; gamma-ray spectroscopy ; spectrometersNuclideNuclear ExperimentComputer Science ApplicationsEducationIonJournal of Physics: Conference Series
researchProduct