0000000000680674

AUTHOR

Tim J. Stevens

showing 2 related works from this author

A minimal Gō-model for rebuilding whole genome structures from haploid single-cell Hi-C data

2020

Abstract We present a minimal computational model, which allows very fast, on-the-fly construction of three dimensional haploid interphase genomes from single-cell Hi-C contact maps using the HOOMD-blue molecular dynamics package on graphics processing units. Chromosomes are represented by a string of connected beads, each of which corresponds to 100,000 base pairs, and contacts are mediated via a structure-based harmonic potential. We suggest and test two minimization protocols which consistently fold into conformationally similar low energy states. The latter are similar to previously published structures but are calculated in a fraction of the time. We find evidence that mere fulfillment…

PhysicsGeneral Computer ScienceMirror imageStructure (category theory)General Physics and Astronomy02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesTerm (time)Computational MathematicsMolecular dynamicsKnot (unit)Mechanics of MaterialsChirality (mathematics)C++ string handlingGeneral Materials ScienceInterphaseStatistical physics0210 nano-technologyComputational Materials Science
researchProduct

Are There Knots in Chromosomes?

2017

Recent developments have for the first time allowed the determination of three-dimensional structures of individual chromosomes and genomes in nuclei of single haploid mouse embryonic stem (ES) cells based on Hi⁻C chromosome conformation contact data. Although these first structures have a relatively low resolution, they provide the first experimental data that can be used to study chromosome and intact genome folding. Here we further analyze these structures and provide the first evidence that G1 phase chromosomes are knotted, consistent with the fact that plots of contact probability vs sequence separation show a power law dependence that is intermediate between that of a fractal globule …

0301 basic medicinechromosomesPolymers and PlasticsknotsPower lawGenomeArticlelcsh:QD241-44103 medical and health scienceschemistry.chemical_compound0302 clinical medicineFractallcsh:Organic chemistrySequence (medicine)PhysicsChromosomeGeneral ChemistryDNAchromosome territoriesFolding (chemistry)030104 developmental biologychemistryEvolutionary biologyfractal globuleknots; chromosomes; chromosome territories; DNA; fractal globulePloidy030217 neurology & neurosurgeryDNAPolymers
researchProduct