0000000000680814

AUTHOR

Karsten Kalbitz

Accelerated soil formation due to paddy management on marshlands (Zhejiang Province, China)

Inundation of paddy soils for submerged rice production strongly impacts soil formation. Here we used chronosequences with up to 2000 years of cultivation history to compare soil formation in non-inundated (non-paddy) cropping systems with the formation of soils used for paddy rice production. This approach allowed us to identify the influence of agricultural management at different stages of pedogenesis. Soil samples were taken from two chronosequences derived from uniform parent material in the coastal region of the Zhejiang Province (P.R. China). One chronosequence consisted of paddy soils of different ages (50-2000 years), characterized by a yearly cropping sequence of rice cultivation …

research product

Contrasting evolution of iron phase composition in soils exposed to redox fluctuations

Abstract Ferric iron (FeIII) solid phases serve many functions in soils and sediments, which include providing sorption sites for soil organic matter, nutrients, and pollutants. The reactivity of Fe solid phases depends on the mineral structure, including the overall crystallinity. In redox-active soils and sediments, repeated reductive dissolution with subsequent exposure to aqueous ferrous iron (Fe2+) and oxidative re-precipitation can alter Fe phase crystallinity and reactivity. However, the trajectory of Fe mineral transformation under redox fluctuations is unclear and has been reported to result in both increases and decreases in Fe phase crystallinity. Several factors such as water bu…

research product

Response of Vertisols, Andosols, and Alisols to paddy management

Abstract Interchanging submergence and drainage in paddy soils induce alternating redox conditions. It is known that this causes changes in organic carbon stocks, in amounts and crystallinity of Fe oxides as well as transformation of clay minerals and subsequent changes in cation exchange capacity (CEC). However, the influence of the initial soil type on the extent of these changes is not yet well understood. Therefore, we studied paddy soils that derived from three different soil types (Vertisols, Andosols, Alisols) on volcanic parent material in Java (Indonesia). To account for the variability in parent materials, we additionally sampled sandstone-derived Alisols in China. Adjacent non-pa…

research product

Contributions of terrestrial organic carbon to northern lake sediments

Abstract Sediments of northern lakes sequester large amounts of organic carbon (OC), but direct evidence of the relative importance of their sources is lacking. We used stable isotope ratios of nonexchangeable hydrogen (δ2Hn) in topsoil, algae, and surface sediments in order to measure the relative contribution of terrestrial OC in surface sediments of 14 mountainous arctic and lowland boreal lakes in Sweden. The terrestrial contribution to the sediment OC pool was on average 66% (range 46–80) and similar between arctic and boreal lakes. Proxies for the supply of terrestrial and algal OC explained trends in the relative contribution of terrestrial OC across lakes. However, the data suggest …

research product

The carbon count of 2000 years of rice cultivation.

More than 50% of the world's population feeds on rice. Soils used for rice production are mostly managed under submerged conditions (paddy soils). This management, which favors carbon sequestration, potentially decouples surface from subsurface carbon cycling. The objective of this study was to elucidate the long-term rates of carbon accrual in surface and subsurface soil horizons relative to those of soils under nonpaddy management. We assessed changes in total soil organic as well as of inorganic carbon stocks along a 2000-year chronosequence of soils under paddy and adjacent nonpaddy management in the Yangtze delta, China. The initial organic carbon accumulation phase lasts much longer a…

research product