0000000000681663

AUTHOR

J. Minár

Probing bulk electronic structure with hard X-ray angle-resolved photoemission.

Traditional ultraviolet/soft X-ray angle-resolved photoemission spectroscopy (ARPES) may in some cases be too strongly influenced by surface effects to be a useful probe of bulk electronic structure. Going to hard X-ray photon energies and thus larger electron inelastic mean-free paths should provide a more accurate picture of bulk electronic structure. We present experimental data for hard X-ray ARPES (HARPES) at energies of 3.2 and 6.0 keV. The systems discussed are W, as a model transition-metal system to illustrate basic principles, and GaAs, as a technologically-relevant material to illustrate the potential broad applicability of this new technique. We have investigated the effects of …

research product

Correlation effects in the total energy, the bulk modulus, and the lattice constant of a transition metal: Combined local-density approximation and dynamical mean-field theory applied to Ni and Mn

We present an accurate implementation of total-energy calculations into the local-density approximation plus dynamical mean-field theory $(\text{LDA}+\text{DMFT})$ method. The electronic structure problem is solved through the full-potential linear muffin-tin orbital and Korringa-Kohn-Rostoker methods with a perturbative solver for the effective impurity suitable for moderately correlated systems. We have tested the method in detail for the case of Ni, and investigated the sensitivity of the results to the computational scheme and to the complete self-consistency. It is demonstrated that the $\text{LDA}+\text{DMFT}$ method can resolve a long-standing controversy between the LDA/generalized …

research product