0000000000681914

AUTHOR

Deepto Chakrabarty

Discovery and Identification of MAXI J1621-501 as a Type I X-Ray Burster with a Super-orbital Period

MAXI J1621-501 is the first Swift/XRT Deep Galactic Plane Survey transient that was followed up with a multitude of space missions (NuSTAR, Swift, Chandra, NICER, INTEGRAL, and MAXI) and ground-based observatories (Gemini, IRSF, and ATCA). The source was discovered with MAXI on 2017 October 19 as a new, unidentified transient. Further observations with NuSTAR revealed 2 Type I X-ray bursts, identifying MAXI J1621-501 as a Low Mass X-ray Binary (LMXB) with a neutron star primary. Overall, 24 Type I bursts were detected from the source during a 15 month period. At energies below 10 keV, the source spectrum was best fit with three components: an absorbed blackbody with kT = 2.3 keV, a cutoff p…

research product

The Large Observatory For x-ray Timing

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

research product

NuSTAR and NICER reveal IGR J17591-2342 as a new accreting millisecond X-ray pulsar

We report the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342. Coherent X-ray pulsations around 527.4 Hz (1.9 ms) with a clear Doppler modulation were detected. This implies an orbital period of ∼8.8 h and a projected semi-major axis of ∼1.23 lt-s. With the binary mass function, we estimate a minimum companion mass of 0.42 M, obtained assuming a neutron star mass of 1.4[subscript ⊙] and an inclination angle lower than 60°, as suggested by the absence of eclipses or dips in the light curve of the source. The broad-band energy spectrum, obtained by combining NuS…

research product

Dense matter with eXTP

In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics o…

research product