0000000000684576

AUTHOR

Russell J. Mclean

Control of nonlinear processes in two-photon excited rubidium vapour by resonant laser light

Frequency up- and down-conversion in warm alkali vapours over a range of applied cw laser intensities has received much attention in recent years due to promising applications in the fields of remote detection, quantum information and computing, specifically in the implementation of correlated photon pairs, photon storage and quantum memory interface to name a few. The generation of directional laser-like blue and infrared light in alkali vapours has been extensively studied. However, important details of the interplay of parametric and nonparametric nonlinear processes, such as the four-wave mixing (FWM) and amplified spontaneous emission (ASE) responsible for the new field generation, are…

research product

Spiking dynamics of frequency up-converted field generated in continuous-wave excited rubidium vapours

We report on spiking dynamics of frequency up-converted emission at 420 nm generated on the 6P3/2-5S1/2 transition in Rb vapour two-photon excited to the 5D5/2 level with laser light at 780 and 776 nm. The spike duration is less than the natural lifetime of any excited level involved in the interaction with both continuous and pulsed pump radiation. The spikes at 420 nm are attributed to temporal properties of the directional emission at 5.23 {\mu}m generated on the population inverted 5D5/2-6P3/2 transition. A link between the spiking regime and cooperative effects is discussed. We suggest that the observed stochastic behaviour is due to the quantum-mechanical nature of the cooperative eff…

research product