A Review of Kernel Methods in Remote Sensing Data Analysis
Kernel methods have proven effective in the analysis of images of the Earth acquired by airborne and satellite sensors. Kernel methods provide a consistent and well-founded theoretical framework for developing nonlinear techniques and have useful properties when dealing with low number of (potentially high dimensional) training samples, the presence of heterogenous multimodalities, and different noise sources in the data. These properties are particularly appropriate for remote sensing data analysis. In fact, kernel methods have improved results of parametric linear methods and neural networks in applications such as natural resource control, detection and monitoring of anthropic infrastruc…