0000000000684896
AUTHOR
Paul Strasser
Energy-Stable Numerical Schemes for Multiscale Simulations of Polymer–Solvent Mixtures
We present a new second-order energy dissipative numerical scheme to treat macroscopic equations aiming at the modeling of the dynamics of complex polymer–solvent mixtures. These partial differential equations are the Cahn-Hilliard equation for diffuse interface phase fields and the Oldroyd-B equations for the hydrodynamics of the polymeric mixture. A second-order combined finite volume/finite difference method is applied for the spatial discretization. A complementary approach to study the same physical system is realized by simulations of a microscopic model based on a hybrid Lattice Boltzmann/Molecular Dynamics scheme. These latter simulations provide initial conditions for the numerical…
Energy-stable linear schemes for polymer-solvent phase field models
We present new linear energy-stable numerical schemes for numerical simulation of complex polymer-solvent mixtures. The mathematical model proposed by Zhou, Zhang and E (Physical Review E 73, 2006) consists of the Cahn-Hilliard equation which describes dynamics of the interface that separates polymer and solvent and the Oldroyd-B equations for the hydrodynamics of polymeric mixtures. The model is thermodynamically consistent and dissipates free energy. Our main goal in this paper is to derive numerical schemes for the polymer-solvent mixture model that are energy dissipative and efficient in time. To this end we will propose several problem-suited time discretizations yielding linear scheme…