0000000000685284

AUTHOR

Gennady Sergienko

0000-0002-1539-4909

showing 4 related works from this author

Understanding tungsten erosion during inter/intra-ELM periods in He-dominated JET-ILW plasmas

2021

Tungsten erosion was quantified during inter/intra-ELM periods in He-dominated JET-ILW plasmas by optical emission spectroscopy. The intra-ELM tungsten sputtering in helium plasmas, which dominates the total W source, prevails by a factor of about 4 over inter-ELM sputtering in the investigated ELM frequency range from 90 Hz-120 Hz. He ions are mainly responsible for the W erosion during the ELMs in He plasmas. The strong in/out asymmetry of the ELM-induced W erosion is observed in He plasmas even at high ELM frequencies beyond 100 Hz. In Ohmic/L-mode plasmas and during the H-mode inter-ELM plasma phases both He2+ and Be2+ ionic species are major contributors to the W erosion. Their contrib…

tungsten divertorJet (fluid)Materials scienceJET-ILWchemistry.chemical_elementMechanicsPlasmaTungstenCondensed Matter PhysicsAtomic and Molecular Physics and Opticsoptical emission spectroscopyplasma-material interactionshelium plasmachemistryErosionddc:530tungsten erosionMathematical Physics
researchProduct

Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification

2017

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

plasma-facing components ; plasma-surface interaction ; power exhaust ; particle exhaust ; tungsten ; berylliumNuclear and High Energy PhysicstungstenNuclear engineeringPlasma surface interactionparticle exhaustplasma-facing components01 natural sciences114 Physical sciences010305 fluids & plasmas0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]ddc:530beryllium; particle exhaust; plasma-facing components; plasma-surface interaction; power exhaust; tungsten; Nuclear and High Energy Physics; Condensed Matter Physics010306 general physicsplasma-surface interaction;particle exhaust;tungsten;beryllium;power exhaust;plasma-facing componentspower exhaustPhysicsPlasma16. Peace & justiceberylliumCondensed Matter PhysicsInteraction studiesEnvironmental science[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]plasma-surface interaction
researchProduct

Overview of the JET results in support to ITER

2017

The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent m…

Technologyfusion:Física [Ciências exactas e naturais]TokamakNuclear engineeringDIAGNOSTICS01 natural sciencesILW010305 fluids & plasmaslaw.inventionIlw[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]PlasmaH-Mode PlasmaslawITERDisruption PredictionCOLLISIONALITYEDGE LOCALIZED MODESDiagnosticsOperationfusion; ITER; JET; plasma; Nuclear and High Energy Physics; Condensed Matter PhysicsPhysicsJet (fluid)JET plasma fusion ITERDivertorSettore FIS/01 - Fisica SperimentaleCondensed Matter PhysicsFusion Plasma and Space PhysicsDENSITY PEAKINGCarbon WallH-MODE PLASMAS[ SPI.MECA.MEFL ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]Density PeakingNuclear and High Energy PhysicsNeutron transportFacing ComponentsCollisionality114 Physical sciencesFísica FísicaNuclear physics:Physical sciences [Natural sciences]Fusion plasma och rymdfysikPedestal0103 physical sciencesNuclear fusionddc:530Neutron010306 general physicsFusionplasmaPhysics Physical sciencesNuclear and High Energy PhysicEdge Localized ModesQC717:Física [Àrees temàtiques de la UPC]Reactors de fusióFísicaFACING COMPONENTSFusion reactorsJetJETCARBON WALLDISRUPTION PREDICTIONOPERATIONddc:600Collisionality
researchProduct

Erosion and screening of tungsten during inter/intra-ELM periods in the JET-ILW divertor

2020

Abstract Intra-ELM tungsten sources, which dominate the total W source, are quantified in the inner and outer divertor of JET-ILW. The amount of the sputtered W atoms for individual ELMs demonstrates a clear dependence on the ELM frequency. It decreases when the pedestal temperature is lower and, correspondingly, the ELM frequency is higher. Nevertheless, the entire gross erosion W source (the number of eroded W atoms per second due to ELMs) increases initially with ELM frequency and reaches its maximum at fELM ≈ 50–55 Hz followed by its reduction in the high frequency range. The in/out asymmetry of the intra-ELM W sources during ELMs is a critical issue and is investigated in this contribu…

PFCNuclear and High Energy PhysicsMaterials scienceMaterials Science (miscellaneous)media_common.quotation_subjectJET-ILWTungsten erosionchemistry.chemical_elementTungsten01 natural sciencesAsymmetry010305 fluids & plasmasDivertor screening of tungstenPedestal0103 physical sciencesDuct (flow)PSImedia_common010302 applied physicsDivertorlcsh:TK9001-9401Tungsten imaging spectroscopyNuclear Energy and EngineeringchemistryW Divertorlcsh:Nuclear engineering. Atomic powerAtomic physicsddc:624Nuclear Materials and Energy
researchProduct