0000000000685841
AUTHOR
R. Sanchez
Nuclear Charge Radius of $^{12}$Be
The nuclear charge radius of $^{12}$Be was precisely determined using the technique of collinear laser spectroscopy on the $2s_{1/2}\rightarrow 2p_{1/2, 3/2}$ transition in the Be$^{+}$ ion. The mean square charge radius increases from $^{10}$Be to $^{12}$Be by $\delta ^{10,12} = 0.69(5) \fm^{2}$ compared to $\delta ^{10,11} = 0.49(5) \fm^{2}$ for the one-neutron halo isotope $^{11}$Be. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of $^{12}$Be. The experimental charge radius is consistent with a breakdown of the N=8 shell closure.
Modern Ives-Stilwell Experiments At Storage Rings: Large Boosts Meet High Precision
We give a brief overview of time dilation tests using high-resolution laser spectroscopy at heavy-ion storage rings. We reflect on the various methods used to eliminate the first-order Doppler effect and on the pitfalls encountered, and comment on possible extensions at future facilities providing relativistic heavy ion beams at $\gamma \gg 1$.