0000000000686843

AUTHOR

Giuseppe Benfatto

showing 2 related works from this author

Determination of the threshold of the break-up of invariant tori in a class of three frequency Hamiltonian systems

2001

We consider a class of Hamiltonians with three degrees of freedom that can be mapped into quasi-periodically driven pendulums. The purpose of this paper is to determine the threshold of the break-up of invariant tori with a specific frequency vector. We apply two techniques: the frequency map analysis and renormalization-group methods. The renormalization transformation acting on a Hamiltonian is a canonical change of coordinates which is a combination of a partial elimination of the irrelevant modes of the Hamiltonian and a rescaling of phase space around the considered torus. We give numerical evidence that the critical coupling at which the renormalization transformation starts to diverg…

PhysicsBreak-UpInvariant toriHamiltonian systems; Invariant tori; Renormalization GroupFOS: Physical sciencesStatistical and Nonlinear PhysicsTorusNonlinear Sciences - Chaotic DynamicsCondensed Matter PhysicsFrequency vectorHamiltonian systemRenormalizationThree degrees of freedomsymbols.namesakePhase spacesymbolsRenormalization GroupChaotic Dynamics (nlin.CD)Hamiltonian systems[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Hamiltonian (quantum mechanics)Mathematics::Symplectic GeometrySettore MAT/07 - Fisica MatematicaMathematical physics
researchProduct

Approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom

1999

We construct an approximate renormalization transformation that combines Kolmogorov-Arnold-Moser (KAM)and renormalization-group techniques, to analyze instabilities in Hamiltonian systems with three degrees of freedom. This scheme is implemented both for isoenergetically nondegenerate and for degenerate Hamiltonians. For the spiral mean frequency vector, we find numerically that the iterations of the transformation on nondegenerate Hamiltonians tend to degenerate ones on the critical surface. As a consequence, isoenergetically degenerate and nondegenerate Hamiltonians belong to the same universality class, and thus the corresponding critical invariant tori have the same type of scaling prop…

KAM TORI; RENORMALIZATION GROUP; STRANGE ATTRACTORSDegenerate energy levelsFOS: Physical sciencesKAM TORIRenormalization groupNonlinear Sciences - Chaotic DynamicsStrange nonchaotic attractorSTRANGE ATTRACTORSHamiltonian systemNonlinear Sciences::Chaotic DynamicsRenormalizationTransformation (function)RENORMALIZATION GROUPQuantum mechanicsChaotic Dynamics (nlin.CD)Invariant (mathematics)Settore MAT/07 - Fisica MatematicaMathematics::Symplectic GeometryScalingMathematicsMathematical physicsPhysical Review E
researchProduct