0000000000687578

AUTHOR

M. Falanga

showing 6 related works from this author

Observations of the X-ray transient EXO 2030+375 with IBIS/ISGRI

2004

researchProduct

The Large Observatory for X-ray Timing (LOFT)

2012

High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultra-dense matter and to black hole masses and spins. A 10 m^2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M…

Event horizonX-ray timingMission7. Clean energy01 natural sciencesneutron starsT175 Industrial research. Research and developmentBINARIESSettore FIS/05 - Astronomia E AstrofisicaALICESILICON DRIFT DETECTORObservatoryEQUATIONneutron star010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsMissions X-ray timing compact objects black holes neutron starscompact objectsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaPROPORTIONAL COUNTER[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusCosmic VisionX-ray astronomy; high time variabilityAstrophysics::High Energy Astrophysical Phenomenablack holes; compact objects; Missions; neutron stars; X-ray timing;FOS: Physical sciencesMissionsX-ray astronomy0103 physical sciencesOSCILLATIONSInstrumentation and Methods for Astrophysics (astro-ph.IM)Supermassive black holehigh time variability010308 nuclear & particles physicsAstronomyCONSTRAINTSAstronomy and Astrophysicsblack holesGalaxyBlack holeNeutron starSpace and Planetary ScienceQB460-466 AstrophysicsDISCOVERYBLACK-HOLESUPERAGILE
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

X-Ray Eclipse Time Delays in 4U2129+47

2007

4U 2129+47 was discovered in the early 80's and classified as an accretion disk corona source due to its broad and partial X-ray eclipses. The 5.24 hr binary orbital period was inferred from the X-ray and optical light curve modulation, implying a late K or M spectral type companion star. The source entered a low state in 1983, during which the optical modulation disappeared and an F8 IV star was revealed, suggesting that 4U 2129+47 might be part of a triple system. The nature of 4U 2129+47 has since been investigated, but no definitive conclusion has been reached. Here, we present timing and spectral analyses of two XMM-Newton observations of this source, carried out in May and June, 2005.…

Physicsaccretion disksAstrophysics (astro-ph)Binary numberbinaries: eclipsingFOS: Physical sciencesAstronomy and AstrophysicsX-rays: starsAstrophysicsAstrophysicsLight curveOrbital periodCoronastars: individual: 4U 2129+47stars: neutronaccretionSpace and Planetary ScienceOrbital motionModulation (music)Center of massEclipse
researchProduct

INTEGRAL monitoring of the Black Hole candidate 1E 1740.7-2942

2004

The brightest persistent Galactic black hole candidate close to the Galactic Centre, 1E 1740.7-2942, has long been observed with INTEGRAL. In this paper, we report on the long-term hard X-ray monitoring obtained during the first year of observations as part of the Galactic Centre Deep Exposure. We discuss the temporal and spectral behaviours in different energy bands up to 250 keV, as well as the hardness-flux correlations.

Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

XIPE: the x-ray imaging polarimetry explorer

2016

XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror bu…

X-ray AstronomyHigh-energy astronomyPolarimetryX-ray opticsX-ray telescopeCondensed Matter Physic01 natural sciencesObservatory0103 physical sciencesPolarimetryElectronicOptical and Magnetic MaterialsSpectral resolutionElectrical and Electronic Engineering010303 astronomy & astrophysicsGas Pixel DetectorPhysicsX-ray astronomyta115X-ray optics010308 nuclear & particles physicsElectronic Optical and Magnetic MaterialApplied MathematicsVegaAstronomyComputer Science Applications1707 Computer Vision and Pattern RecognitionGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray opticsCondensed Matter PhysicsComputer Science ApplicationsApplied MathematicGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray optics; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray optics; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications; Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringComputer Vision and Pattern RecognitionX-ray optic
researchProduct