0000000000697641
AUTHOR
Bernd Lunkenheimer
Infrared study of the MoO3 doping efficiency in 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP)
AbstractElectrochemical doping produces clear changes in the vibrational spectra of organic semiconductors as we show here for the system molybdenum oxide (MoO3) doped into the charge transport material 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP). Based on density-functional theory (DFT) calculations of vibrational spectra, the new spectral features can be attributed to the CBP cation that forms as a result of electron transfer from CBP to MoO3. The intensity of the new vibrational lines is a direct measure for the probability of charge transfer. MoO3 agglomerating within the CBP matrix limits the active interface area between the two species. The appearance of a broad electronic transition …
Solvent Effects on Electronically Excited States Using the Conductor-Like Screening Model and the Second-Order Correlated Method ADC(2).
The conductor-like screening model (COSMO) is used to treat solvent effects on excited states within a correlated method based on the algebraic-diagrammatic construction through second-order ADC(2). The origin of solvent effects is revisited, and it is pointed out that two types of contributions have to be considered. One effect is due to the change of the solute's charge distribution after excitation, which triggers a reorganization of the solvent. Initially, only the electronic degrees of freedom adapt to the new charge distribution (nonequilibrium case); for sufficiently long-lived states, the reorientation of the solvent molecules contributes, as well (equilibrium case). The second effe…
The Triplet Excimer of Naphthalene: A Model System for Triplet−Triplet Interactions and Its Spectral Properties
Basic concepts of triplet excimer formation and triplet−triplet interactions between molecules with conjugated π-systems are investigated by means of ab initio quantum chemical calculations, employing the second-order coupled-cluster method CC2 and the second-order propagator method ADC(2). The naphthalene dimer turns out to be a very fruitful model system for which weak and strong electronic coupling can be identified depending on the mutual arrangement of the monomer moieties. From geometry optimizations in the excited state, we determine binding energies, including solvent effects, and transient absorption spectra. The most stable T1 conformation turns out to be a face-to-face arrangemen…
Emergence of Coherence through Variation of Intermolecular Distances in a Series of Molecular Dimers
Quantum coherences between electronically excited molecules are a signature of entanglement and play an important role for energy transport in molecular assemblies. Here we monitor and analyze for a homologous series of molecular dimers embedded in a solid host the emergence of coherence with decreasing intermolecular distance by single-molecule spectroscopy and quantum chemistry. Coherent signatures appear as an enhancement of the purely electronic transitions in the dimers which is reflected by changes of fluorescence spectra and lifetimes. Effects that destroy the coherence are the coupling to the surroundings and to vibrational excitations. Complementary information is provided by excit…