0000000000697711
AUTHOR
E. Simmons
Implantation-decay station for low-energy proton measurements
Abstract We have built an implantation-decay station for β - delayed proton and α decay studies at the focal plane of the Momentum Achromat Recoil Spectrometer (MARS) at the Cyclotron Institute of Texas A&M University. Energetic secondary beams with a small momentum spread are stopped in a controlled manner into a very thin silicon strip detector. In addition, high-purity germanium detectors are installed for γ ray detection. Here we give a description of the setup and the observed performance down to E p ≈ 200 keV using implanted 23 Al and 31 Cl sources.
The beta-delayed proton and gamma decay of 27P for nuclear astrophysics
The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p, γ) 25Al(β +ν) 25Mg(p, γ) 26Al, but this chain can be by-passed by another chain, 25Al(p, γ) 26Si(p, γ) 27P and it can also be destroyed directly. The reaction 26mAl(p, γ) 27Si∗ is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, throug…
Experimental study ofβ-delayed proton decay ofAl23for nucleosynthesis in novae
The $\ensuremath{\beta}$-delayed $\ensuremath{\gamma}$ and proton decay of $^{23}\mathrm{Al}$ has been studied with an alternative detector setup at the focal plane of the momentum achromat recoil separator MARS at Texas A University. We could detect protons down to an energy of 200 keV and determine the corresponding branching ratios. Contrary to results of previous $\ensuremath{\beta}$-decay studies, no strong proton intensity from the decay of the isobaric analog state (IAS) of the $^{23}\mathrm{Al}$ ground state at ${E}_{x}=7803$ keV in $^{23}\mathrm{Mg}$ was observed. Instead we assign the observed low-energy group ${E}_{p,\mathrm{c}.\mathrm{m}.}=206$ keV to the decay from a state that…
The Beta-Delayed Proton and Gamma Decay of 27P for Nuclear Astrophysics
The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p,γ)25AI(β+v)25 Mg(p,γ)26Al, but this chain can be by-passed by another chain, 25Al(p, γ)26Si(p, γ)27P and it can also be destroyed directly. The reaction 26m Al (p, γ)27 Si* is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, through the…
Study of excited states of [sup 31]S through beta-decay of [sup 31]Cl for nucleosynthesis in ONe novae
We have produced an intense and pure beam of 31Cl with the MARS Separator at the Texas A&M University and studied β‐decay of 31Cl by implanting the beam into a novel detector setup, capable of measuring β‐delayed protons and γ‐rays simultaneously. From our data, we have established decay scheme of 31Cl, found resonance energies with 1 keV precision, have measured its half‐life with under 1% accuracy, found its Isobar Analog State decay and by using the IMME obtained an improved mass excess for its ground state. In this contribution, a description of the used method along with selected preliminary experimental results are given and their relevance for novae nucleosynthesis discussed.
Decay spectroscopy for nuclear astrophysics: β- and β-delayed proton decay
In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measu…
Decay Spectroscopy for Nuclear Astrophysics: β-delayed Proton Decay
In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measu…
Very Low Energy Protons From the Beta Decay of Proton Rich Nuclei For Nuclear Astrophysics
The MARS group at TAMU has developed a new experimental technique to measure very low energy protons from β-delayed proton-decay of proton-rich nuclei produced and separated with the MARS recoil spectrometer at TAMU. Recently we have investigated the β-delayed p-decays of 23Al [1], and 31Cl [2], and obtained information on the resonances in the 22Na(p,γ)23Mg and 30P(p,γ) 31S reactions, respectively. These reactions are important in explosive H-burning in Novae [3]. Recently an experiment looking at the β-delayed p-decay of 20Mg was also done in order to obtain information on resonances in the 19Ne(p,γ)20Na reaction. A simple setup consisting of a telescope made of a thin double sided Si str…
β-decay of [sup 23]Al and nova nucleosynthesis
We have studied the β‐decay of 23Al with a novel detector setup at the focal plane of the MARS separator at the Texas A&M University to resolve existing controversies about the proton intensities of the IAS in 23Mg and to determine the absolute proton branching ratios by combining our results to the latest γ‐decay data. Experimental technique, results and the relevance for nova nucleosynthesis are discussed.