0000000000697844

AUTHOR

M. Cheralu

Asymmetric and symmetric fission of excited nuclei of Hg180,190 and Pb184,192,202 formed in the reactions with Ar36 and Ca40,48 ions

Background: Observation of asymmetric fission of $^{180}\mathrm{Hg}$ has led to intensive theoretical and experimental studies of fission of neutron-deficient nuclei in the lead region.Purpose: The study of asymmetric and symmetric fission modes of $^{180,190}\mathrm{Hg}$ and $^{184,192,202}\mathrm{Pb}$ nuclei.Methods: Mass-energy distributions of fission fragments of $^{180,190}\mathrm{Hg}$ and $^{184}\mathrm{Pb}$ formed in the $^{36}\mathrm{Ar}+^{144,154}\mathrm{Sm}$ and $^{40}\mathrm{Ca}+^{144}\mathrm{Sm}$ reactions, respectively, at energies near the Coulomb barrier have been measured using the double-arm time-of-flight spectrometer CORSET and compared with previously measured $^{192,20…

research product

Fission of 180,182,183Hg* and 178Pt* nuclei at intermediate excitation energies

Purpose: The study of asymmetric and symmetric fission of 180,182,183Hg and 178Pt nuclei as a function of their excitation energy and isospin. Methods: Mass-energy distributions of fission fragments of 180Hg, 178Pt (two protons less than 180Hg), and 182Hg (two neutrons more than 180Hg) formed in the 36Ar+144Sm,142Nd, and 40Ca+142Nd reactions were measured at energies near and above the Coulomb barrier. Fission of 183Hg obtained in the reaction of 40Ca with 143Nd was also investigated to see if one extra neutron could lead to dramatic changes in the fission process due to the shape-staggering effect in radii, known in 183Hg. The measurements were performed with the double-arm time-of-flight …

research product

Asymmetric and symmetric fission of excited nuclei of 180,190Hg and 184,192,202Pb formed in the reactions with 36Ar and 40,48Ca ions

Background: Observation of asymmetric fission of 180Hg has led to intensive theoretical and experimental studies of fission of neutron-deficient nuclei in the lead region. Purpose: The study of asymmetric and symmetric fission modes of 180,190Hg and 184,192,202Pb nuclei. Methods: Mass-energy distributions of fission fragments of 180,190Hg and 184Pb formed in the 36Ar+144,154Sm and 40Ca+144Sm reactions, respectively, at energies near the Coulomb barrier have been measured using the double-arm time-of-flight spectrometer CORSET and compared with previously measured 192,202Pb isotopes produced in the 48Ca+144,154Sm reactions. The mass distributions for 180,190Hg and 184,192,202Pb together with…

research product

Investigation of fusion probabilities in the reactions with 52,54Cr, 64Ni, and 68Zn ions leading to the formation of Z = 120 superheavy composite systems

Background: The formation of superheavy nuclei in fusion reactions is suppressed by a competing quasifission process. The competition between the formation of the compound nucleus and the quasifission depends strongly on the reaction entrance channel. Purpose: The investigation of fission and quasifission processes in the formation of Z=120 superheavy composite systems in the 52,54Cr+248Cm and 68Zn+232Th reactions, and their comparison with the 64Ni+238U reaction at energies in the vicinity of the Coulomb barrier. Methods: Mass-energy distributions of fissionlike fragments formed in the reactions 52,54Cr+248Cm and 68Zn+232Th at energies near the Coulomb barrier were measured using the doubl…

research product