0000000000698171

AUTHOR

Tommaso Flaminio

On conditional probabilities and their canonical extensions to Boolean algebras of compound conditionals

In this paper we investigate canonical extensions of conditional probabilities to Boolean algebras of conditionals. Before entering into the probabilistic setting, we first prove that the lattice order relation of every Boolean algebra of conditionals can be characterized in terms of the well-known order relation given by Goodman and Nguyen. Then, as an interesting methodological tool, we show that canonical extensions behave well with respect to conditional subalgebras. As a consequence, we prove that a canonical extension and its original conditional probability agree on basic conditionals. Moreover, we verify that the probability of conjunctions and disjunctions of conditionals in a rece…

research product

Compound conditionals as random quantities and Boolean algebras

Conditionals play a key role in different areas of logic and probabilistic reasoning, and they have been studied and formalised from different angles. In this paper we focus on the de Finetti's notion of conditional as a three-valued object, with betting-based semantics, and its related approach as random quantity as mainly developed by two of the authors. Compound conditionals have been studied in the literature, but not in full generality. In this paper we provide a natural procedure to explicitly attach conditional random quantities to arbitrary compound conditionals that also allows us to compute their previsions. By studying the properties of these random quantities, we show that, in f…

research product

Canonical Extensions of Conditional Probabilities and Compound Conditionals

In this paper we show that the probability of conjunctions and disjunctions of conditionals in a recently introduced framework of Boolean algebras of conditionals are in full agreement with the corresponding operations of conditionals as defined in the approach developed by two of the authors to conditionals as three-valued objects, with betting-based semantics, and specified as suitable random quantities. We do this by first proving that the canonical extension of a full conditional probability on a finite algebra of events to the corresponding algebra of conditionals is compatible with taking subalgebras of events.

research product