0000000000698481

AUTHOR

M. Csanad

Cold-Nuclear-Matter Effects on Heavy-Quark Production ind+AuCollisions atsNN=200  GeV

The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d+Au and p+p collisions at sqrt[S(NN)]=200 GeV in the transverse-momentum range 0.85 ≤ p(T)(e) ≤ 8.5 GeV/c. In central d+Au collisions, the nuclear modification factor R(dA) at 1.5<p(T)<5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p+p collisions, and shows that the mass-dependent Cronin enhancement observed at the Relativistic Heavy Ion Collider extends to the heavy D meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-…

research product

Low-momentum direct-photon measurement in Cu + Cu collisions at sNN=200GeV

We measured direct photons for pT<5GeV/c in minimum bias and 0%–40% most-central events at midrapidity for Cu+Cu collisions at sNN=200GeV. The e+e− contribution from quasireal direct virtual photons has been determined as an excess over the known hadronic contributions in the e+e− mass distribution. A clear enhancement of photons over the binary scaled p+p fit is observed for pT<4GeV/c in Cu+Cu data. The pT spectra are consistent with the Au+Au data covering a similar number of participants. The inverse slopes of the exponential fits to the excess after subtraction of the p+p baseline are 285±53(stat)±57(syst)MeV/c and 333±72(stat)±45(syst)MeV/c for minimum bias and 0%–40% most-central even…

research product

Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Centrald+AuCollisions atsNN=200  GeV

The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in d + Au collisions at root s(NN) = 200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central p + Pb collisions at root s(NN) = 5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in d + Au collisions at RHIC compared to those seen…

research product

Cold-nuclear-matter effects on heavy-quark production at forward and backward rapidity in d + Au collisions at √sNN = 200  GeV.

The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1p(T)6  GeV/c at forward and backward rapidity (1.4|y|2.0) in d+Au and p + p collisions at √sNN = 200  GeV. In central d+Au collisions, relative to the yield in p + p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-p(T) broadening, cannot simultaneously reproduce the data at both rapidity ranges, which implies that t…

research product

Direct photon production ind+Au collisions atsNN=200GeV

Direct photons have been measured in root s(NN) = 200 GeV d + Au collisions at midrapidity. A wide p(T) range is covered by measurements of nearly real virtual photons (1 < p(T) < 6 GeV/c) and real photons (5 < p(T) < 16 GeV/c). The invariant yield of the direct photons in d + Au collisions over the scaled p + p cross section is consistent with unity. Theoretical calculations assuming standard cold-nuclear-matter effects describe the data well for the entire p(T) range. This indicates that the large enhancement of direct photons observed in Au + Au collisions for 1.0 < p(T) < 2.5 GeV/c is attributable to a source other than the initial-state nuclear effects.

research product

Nuclear Modification ofψ′,χc, andJ/ψProduction ind+AuCollisions atsNN=200  GeV

We present results for three charmonia states (psi' chi(c), and J/ psi) in d + Au collisions at vertical bar y vertical bar < 0.35 and root s(NN) = 200 GeV. We find that the modification of the psi' yield relative to that of the J/ psi scales approximately with charged particle multiplicity at midrapidity across p + A, d + Au, and A + A results from the Super Proton Synchrotron and the Relativistic Heavy Ion Collider. In large-impact-parameter collisions we observe a similar suppression for the psi' and J/ psi, while in small-impact-parameter collisions the more weakly bound psi' is more strongly suppressed. Owing to the short time spent traversing the Au nucleus, the larger psi' suppressio…

research product

Deviation from quark number scaling of the anisotropy parameterv2of pions, kaons, and protons inAu+Aucollisions atsNN=200GeV

Measurements of the anisotropy parameter v(2) of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p(T), and transverse kinetic energy KET at midrapidity (vertical bar eta vertical bar < 0.35) in Au + Au collisions at root s(N N) = 200 GeV are presented. Pions and protons are identified up to p(T) = 6 GeV/c, and kaons up to p(T) = 4 GeV/c, by combining information from time-of-flight and aerogel Cerenkov detectors in the PHENIX Experiment. The scaling of v(2) with the number of valence quarks (n(q)) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observ…

research product

Odderon Exchange from Elastic Scattering Differences between pp and pp¯ Data at 1.96 TeV and from pp Forward Scattering Measurements

We describe an analysis comparing the p p ¯ elastic cross section as measured by the D0 Collaboration at a center-of-mass energy of 1.96 TeV to that in p p collisions as measured by the TOTEM Collaboration at 2.76, 7, 8, and 13 TeV using a model-independent approach. The TOTEM cross sections, extrapolated to a center-of-mass energy of s = 1.96 TeV , are compared with the D0 measurement in the region of the diffractive minimum and the second maximum of the p p cross section. The two data sets disagree at the 3.4 σ level and thus provide evidence for the t -channel exchange of a colorless, C -odd gluonic compound, also known as the odderon. We combine these results with a TOTEM analysis of th…

research product

Measurement of J/ψ at forward and backward rapidity in p+p , p+Al , p+Au , and He3+Au collisions at sNN=200 GeV

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au, and He3+Au, at sNN=200 GeV. The results are presented in the form of the observable RAB, the nuclear modification …

research product

Cross section and longitudinal single-spin asymmetry AL for forward W±→μ±ν production in polarized p+p collisions at s=510  GeV

We have measured the cross section and single-spin asymmetries from forward W±→μ±ν production in longitudinally polarized p+p collisions at s=510 GeV using the PHENIX detector at the Relativistic Heavy Ion Collider. The cross sections are consistent with previous measurements at this collision energy, while the most forward and backward longitudinal single spin asymmetries provide new insights into the sea quark helicities in the proton. The charge of the W bosons provides a natural flavor separation of the participating partons. © 2018 authors. Published by the American Physical Society.

research product