0000000000699387

AUTHOR

Ivan A. Bobrikov

showing 2 related works from this author

Neutron diffraction study of microstructural and magnetic effects in fine particle NiO powders

2016

Nickel oxide powders with grain sizes ranging from 100 to 1500 nm have been studied by high-resolution neutron diffraction. We have found that the atomic structure, the antiferromagnetic ordering, and the value of the nickel magnetic moments inherent in the bulk material of NiO are still preserved and are nearly independent of the average size of the grains. The sizes of the coherently scattering atomic and magnetic domains were estimated independently owing to a complete separation of the nuclear and magnetic peaks in the neutron diffraction patterns. It is shown that the finite-size and surface disorder effects in particles at the submicron scale have a more pronounced influence on the ma…

010302 applied physicsMaterials scienceMagnetic structureMagnetic domainMagnetic momentCondensed matter physicsScatteringMagnetismNickel oxideNeutron diffraction02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsCrystallography0103 physical sciencesParticle0210 nano-technologyphysica status solidi (b)
researchProduct

Neutron scattering study of structural and magnetic size effects in NiO

2013

Nickel oxide powders with the grain size of 13–1500 nm have been studied by neutron scattering, scanning electron microscopy and vibrating sample magnetometry. We have found that the atomic structure and the antiferromagnetic ordering are nearly independent of the average size of grains. The existence of the uncompensated spins in nanoparticles with the grain size below 100 nm has been detected.

Materials scienceCondensed matter physicsSpinsScanning electron microscopeNickel oxideNon-blocking I/ONanoparticleNeutron scatteringGrain sizeCondensed Matter::Materials ScienceCrystallographyPhysics::Atomic and Molecular ClustersAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsIOP Conference Series: Materials Science and Engineering
researchProduct