0000000000699613

AUTHOR

Anika Schrade

Next-Generation Sequencing (NGS)-Based Measurable Residual Disease (MRD) Monitoring in Acute Myeloid Leukemia with FLT3 Internal Tandem Duplication (FLT3-ITD+ AML) Treated with Additional Midostaurin

Background: FLT3-ITD occurs in ~25% of adult AML patients (pts) and is associated with poor prognosis. MRD monitoring is of high prognostic relevance, but restricted to certain AML subtypes. FLT3-ITD represents an attractive target for MRD monitoring in particular in pts treated with a tyrosine kinase inhibitor. FLT3-ITD MRD monitoring is hampered by the broad heterogeneity of ITD length and insertion site (IS). NGS may overcome these limitations offering the opportunity for MRD monitoring in FLT3-ITD+ AML. Aims: To validate our recently established NGS-based FLT3-ITD MRD assay in a defined cohort of FLT3-ITD+ AML pts treated within the AMLSG16-10 trial (NCT01477606) combining intensive che…

research product

Midostaurin Plus Intensive Chemotherapy for Younger and Older Patients with Acute Myeloid Leukemia and FLT3 Internal Tandem Duplications

Abstract BACKGROUND: Midostaurin is a first-generation, type I multi-targeted kinase inhibitor with inhibitory activity against FLT3-ITD and -TKD mutations. Midostaurin is approved by FDA and EMA in combination with intensive induction and consolidation chemotherapy for adult patients with AML exhibiting an activating FLT3 mutation; the EMA label also includes single-agent maintenance therapy following consolidation chemotherapy. We conducted a phase-II trial (AMLSG 16-10) to evaluate midostaurin with induction chemotherapy followed by allogeneic hematopoietic-cell transplantation (HCT) and a one-year midostaurin maintenance therapy in younger and older patients with acute myeloid leukemia …

research product